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A Glass Half Empty Full

Mathematical modeling expands like never before in recent times.

Strong drive towards more detailed and/or fine-grained models.

Progress and impact create novel opportunities...

...but come at a cost.
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The Enzymatic Paradigm

Reaction sucrose
invertase−−−−−⇀↽−−−−−
invertase

fructose + glucose

Mechanism Two-step chemical mechanism involving a complex

Model S + E −⇀↽− C → P + E

ṡ = −k1(eT − c)s + k−1c

ċ = k1(eT − c)s − (k−1 + k2)c

sT = s + c + p

eT = e + c

Slaving
ċ = 0

c = eT
s

s + K

Reduced
Model

ṡ = −Vmax
s

s + K
⇒ ṗ = −g(p)

closure
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ṡ = −Vmax
s

s + K
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The Prehistory of Multiscale Reduction

Jean-Baptiste Biot

—

Jean-Francois Persoz

−→

Polarimetric
Saccharimeter

(1833)

sucrose
C12H22O11

+

↓

fructose
C6H12O6

+

glucose
C6H12O6

Anselme Payen

−→

Diastase/Invertase

(1st Enzyme)
(1833)
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Ensuing Uncertainty

Different researchers reported different polarimetric data...

...some insisted that the reaction did follow the law of mass action...

...while others maintained that it was of zeroth order.
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Ensuing Uncertainty

Different researchers reported different polarimetric data...

...some insisted that the reaction did follow the law of mass action...

...while others maintained that it was of zeroth order.

Progress was unduly hindered by the ongoing battle on vitalism.

Finally, researchers thought of a rate-limiting intermediate complex.
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Partial Chronology

[1902] Qualitative description by A.J. Brown Trans J Chem Soc 81
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A Zagaris Universiteit Twente. Multiscale Model Reduction DTU Winter School 2013 6 / 26



Partial Chronology
[1902] Qualitative description by A.J. Brown Trans J Chem Soc 81
[1903] Quantification by V. Henri PhD Thesis, Université de Paris
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The Era of Large-Scale Models

‘ Over a four-decade period [...], algorithms
alone have brought a speed increase [...] to
computing the electrostatic potential induced
by a charge distribution [...] comparable to
that resulting from the hardware speedup due

to Moore’s Law over the same length of time.
’

‘ New methodologies for closure should be developed and used to derive
multiscale models for some of the “difficult” cases in multiscale science, for
example, problems without strong scale separation, rare event problems, or

reduction of high-dimensional state spaces to a small number of degrees
of freedom. ’

‘A Science-Based Case For Large-Scale Simulation’ (U.S. DOE 2003-04)
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A Partial List of Multiscale Reduction Methods

Quasi-Steady State Approximation [QSSA] Briggs & Haldane 1925

Functional Iteration Method Fraser & Rousel 1988

Computational Singular Perturbation [CSP] Lam & Goussis 1988

Method of Invariant Manifold [MIM] Gorban & Karlin 1992

Intrinsic Low-Dimensional Manifold [ILDM] Maas & Pope 1992

Predictor–Corrector Davis & Skodje 1999

Approximate Slow Invariant Manifold [ASIM] Singh, Powers & Paolucci 2002

Transformation into Explicit Slow–Fast Form Gerdtzen, Daoutidis & Hu 2004

Variational Approaches Lebiedz 2004

Straightening Out Method MacKay, Uldall Kristiansen, Brøns & Starke 2004

Reduction in Metabolic Networks Gerdtzen, Daoutidis & Hu 2004

Zero-derivative Principle [ZDP] Gear, Kevrekidis, Kaper & Zagaris 2005

Finite-Time Lyapunov Vectors Mease & Topcu 2005

ICE-PIC Ren, Pope, Vladimirsky & Guckenheimer 2006

Local Embedding Algorithm Adrover, Creta, Giona & Valorani 2007
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Geometric Singular Perturbation Theory

Fast System
ẋ1 = ε g1(x; ε)
ẋ2 = g2(x; ε)

t=εT−−−→

←−−−−
T=t/ε

Slow System
x′1 = g1(x; ε)
ε x′2 = g2(x; ε)

S0 =
{

x | g2(x; 0) = 0
}

=
{

x | x2 = S0(x1)
}

critical manifold

F0(x1) =
{

x | x1 = const.
}

attracting fiber

S0 is fixed

—

Dynamics only on S0
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Finite Timescale Separation

S0 perturbs to invariant manifold Sε =
{

x | x2 = Sε(x1)
}

slow manifold

{F0(p) |p ∈ S0 } perturbs to invariant family {Fε(p) |p ∈ Sε } fast fibers

Evolution = fast fiber dynamics + slow basepoint dynamics reduction
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Example: Enzyme Kinetics

Substrate ṡ = ε
(
− s + (κ− λ) c + c s

)
s+ ε c+ p = 1

Complex ċ = s− (κ+ s) c c+ e = 1

parameterized by time; every point on the curve corre-
sponds to a value (s(t), c(t)), for some time t, and vice
versa (Fig. 1). It becomes evident that the evolution of s
and c towards their equilibrium values runs through two
distinct phases. In the first phase, c increases (or
decreases), whereas s remains essentially constant,
corresponding to an initial rapid binding of S to E (or
dissociation of C). In the second phase, both variables
evolve at similar rates towards their equilibrium values,
corresponding to the consumption of substrate by the
enzyme. The duration of the first phase is far shorter
than that of the second one, a fact which has led
researchers to label the dynamics driving the former
fast (or transient) and those driving the latter slow.
This fact also suggests that, except for a short initial
period, the evolution of the system is described by the
part of the trajectory corresponding to the second, slow
phase.
A related feature of the model given by Eqns (2,3)

(and one of central importance to the present study)
becomes apparent upon plotting the trajectories corre-
sponding to several initial conditions. In particular,
Fig. 1 shows that all trajectories approach a certain
curve in the (s, c)-plane during the first phase and stay
in a neighborhood of it during the second phase; for
the irreversible case, also [38]. This curve is called a
normally attracting, slow invariant manifold (SIM).
The SIM serves to link the full to the fully relaxed
dynamics because the system dynamics follows a cas-
cade from full (approach to the SIM) to partially
relaxed (close to the SIM) and, eventually, to fully
relaxed (close to the equilibrium). In this sense, SIMs
form the backbone on which the dynamics is organized
at intermediate timescales.
The SIM is the graph of a constraining relation,

namely a relation c ¼ c(s) dictating that, past the

transient phase, the complex concentration is approxi-
mately a function of the substrate concentration.
Knowledge of the constraining relation c ¼ c(s)
allows one to reduce Eqns (2,3) to the single ODE:

_s ¼ "k1ðetot " cðsÞÞsþ k"1cðsÞ ð5Þ

This ODE, together with the constraining relation
c ¼ c(s) and the conservation laws e(t) + c(t) ¼ etot
and p(t) ¼ p, describes the dynamics of the system at
the slow timescale.

General multiscale systems

Here, we generalize the notions introduced above to
more general multiscale systems. In what follows, we
use the term state variables to denote those time-depen-
dent variables in a biochemical system that fully
describe the system at any given moment. (State vari-
ables are, typically but not exclusively, molecular con-
centrations. In certain models, they can also be linear
combinations of such concentrations or other time-
dependent quantities, such as pH or membrane poten-
tial.) First, we collect the values of all n state variables
(where n is a natural number depending on the
complexity of the system) at any time instant t in a col-
umn vector z(t). The time evolution of the components
of z is dictated by a set of state equations in the form
of ODEs:

_zðtÞ ¼ f ðzðtÞÞ ð6Þ

where f is a vector-valued function of n variables
and with n components. In the case of the simple
enzyme reaction model in the previous section, we
have:

n ¼ 2; z ¼
s

c

! "
and

f ðs; cÞ ¼
k"1c " k1ðetot " cÞs

ðk1sþ k"2pÞðetot " cÞ " ðk"1 þ k2Þc

! "

[see Eqns (2,3)]. The n-dimensional Euclidean space
Rn, which is where the state variables collected in z
assume values, is called the state space [in the enzyme
reaction example, this is the (s, c)-plane]. A solution
z(t) of Eqn (6) corresponding to any given initial con-
dition z(0) ¼ z0 and plotted in the state space for all t
is a trajectory, whereas any value z* satisfying
f(z*) ¼ 0 is a steady state. [In the example above, the
condition f(s*, c*) ¼ 0 is fulfilled when v1 ¼ v2 ¼ 0,
cf. Eqn (2), and therefore the unique steady state of
that specific system is the equilibrium in Eqn (4) of
the enzymatic reaction.]

1 2 3 4

0.02
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0.1

0.14

s (arbitrary units)

c
 (
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Fig. 1. Graph of the (s, c)-plane for Eqns (2,3) with several trajecto-

ries corresponding to different initial conditions (round dots) and

the steady state (s*, c*) ¼ (0.003, 0.0043) (square dot). The rate

constants here are k1 ¼ 1.833, k)1 ¼ 0.25, k2 ¼ 2.5 and k)2 ¼
0.55, whereas etot ¼ 0.2 and p ¼ 0.1.

Enzyme kinetics for low substrate concentrations H. M. Härdin et al.

5494 FEBS Journal 276 (2009) 5491–5506 ª 2009 The Authors Journal compilation ª 2009 FEBS

accurate approximation of the SIM than the QSSA
manifold.

The ZDP

Here, we introduce the ZDP as an accurate generaliza-
tion of the QSSA. The ZDP manifold of order m
(where m can take the values 0, 1, 2, . . .) is defined to
be the set of points that satisfy the algebraic condition:

dmþ1!y

dtmþ1
¼ 0 ð15Þ

and denoted by ZDPm. As was the case with the
QSSA, !y denotes variables that can be assumed to be
in partial relaxation (i.e. variables that evolve over a
fast timescale). The time derivative in the ZDP condi-
tion given by Eqn (15) is calculated using Eqn (6), so
that this condition becomes:

0 ¼ d!y

dt
¼ f!y for m ¼ 0 ð16Þ

0 ¼ d2!y

dt2
¼
@f!y
@!x

f!x þ
@f!y
@!y

f!y for m ¼ 1 ð17Þ

and similarly for higher values of m (see also Doc. S1).
Plainly, the QSSA manifold and ZDP0 coincide, as

the conditions in Eqn (9) and Eqns (15,16) defining
them are identical: the QSSA and the zeroth-order
ZDP yield the same approximate constraining relation.
The ZDP manifolds of higher orders, in turn, do not
coincide with the QSSA manifold in general; for exam-
ple, ZDP1 generally differs from the QSSA manifold
because of the presence of the first term in the right-
hand side of Eqn (17). Instead, the ZDP conditions of
higher orders are natural extensions of the QSSA: they
also yield a system (Eqn 15) of algebraic equations,
and the ZDPm is the locus of points satisfying them.
The sole difference between the two approaches is that
the ZDP replaces the first-order time derivative
employed by the QSSA with higher-order time deriva-
tives; see Eqn (15).

Although technically more involved, this approach
has proven to perform well; indeed, the sequence of
manifolds ZDP0, ZDP1, .. . limits to a SIM and hence
serves to approximate an exact constraining relation
with arbitrary accuracy [31]. To gain insight into this
result, we recall that a SIM is the locus of points
where system evolution is slow: the time derivatives of
all orders of the state variables are small. On the
QSSA manifold, d!y=dt ¼ 0; nevertheless, the higher-
order time derivatives remain large on it. On ZDP1, in
turn, d2!y=dt2 ¼ 0 and, additionally, d!y=dt is small;
higher-order derivatives are, here also, large. More
generally, dmþ1!y=dtmþ1 is identically zero on ZDPm

and d!y=dt; . . . ; dm!y=dtm are small on it, as long as the
variables !y evolve over a fast timescale and the matrix
@f!y=@!y appearing in Eqn (17) is nonsingular [23,31].
Because the ZDPm with m > 1 achieves to bound
more time derivatives than the QSSA manifold, it is
also typically closer to a SIM. Alternatively, each time
differentiation of a solution to Eqn (6) amplifies its
fast component, and hence higher-order ZDP condi-
tions filter out this fast dynamics to successively higher
orders: points satisfying these conditions yield solu-
tions with fast components of smaller magnitude (i.e.
these points lie closer to a SIM).

In biochemical terms, and focusing on our enzyme
kinetics example to add concreteness to our exposition,
if substrate is injected into an enzyme assay at time
zero, one observes a rapid binding of substrate to
enzyme; accordingly, the concentration c of complex

c

QSSA

1 2 3 4
s
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0.1

0.15

c
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1 2 3 4
s

0.5
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2.5

3.5

c
QSSA

1 2 3 4
s

5

15

25

35

A

B

C

Fig. 2. Trajectories of the system in Eqn (11) together with QSSA

manifolds (Eqn 12). The parameter values of k1, k)1, k2, k)2 and p

are the same as those shown in Fig. 1 and the total enzyme con-

centration is etot ¼ 0.2 in (A), etot ¼ 4 in (B), and etot ¼ 40 in (C).

H. M. Härdin et al. Enzyme kinetics for low substrate concentrations

FEBS Journal 276 (2009) 5491–5506 ª 2009 The Authors Journal compilation ª 2009 FEBS 5497
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relaxed (close to the SIM) and, eventually, to fully
relaxed (close to the equilibrium). In this sense, SIMs
form the backbone on which the dynamics is organized
at intermediate timescales.
The SIM is the graph of a constraining relation,

namely a relation c ¼ c(s) dictating that, past the

transient phase, the complex concentration is approxi-
mately a function of the substrate concentration.
Knowledge of the constraining relation c ¼ c(s)
allows one to reduce Eqns (2,3) to the single ODE:

_s ¼ "k1ðetot " cðsÞÞsþ k"1cðsÞ ð5Þ

This ODE, together with the constraining relation
c ¼ c(s) and the conservation laws e(t) + c(t) ¼ etot
and p(t) ¼ p, describes the dynamics of the system at
the slow timescale.

General multiscale systems

Here, we generalize the notions introduced above to
more general multiscale systems. In what follows, we
use the term state variables to denote those time-depen-
dent variables in a biochemical system that fully
describe the system at any given moment. (State vari-
ables are, typically but not exclusively, molecular con-
centrations. In certain models, they can also be linear
combinations of such concentrations or other time-
dependent quantities, such as pH or membrane poten-
tial.) First, we collect the values of all n state variables
(where n is a natural number depending on the
complexity of the system) at any time instant t in a col-
umn vector z(t). The time evolution of the components
of z is dictated by a set of state equations in the form
of ODEs:

_zðtÞ ¼ f ðzðtÞÞ ð6Þ

where f is a vector-valued function of n variables
and with n components. In the case of the simple
enzyme reaction model in the previous section, we
have:

n ¼ 2; z ¼
s

c

! "
and

f ðs; cÞ ¼
k"1c " k1ðetot " cÞs

ðk1sþ k"2pÞðetot " cÞ " ðk"1 þ k2Þc

! "

[see Eqns (2,3)]. The n-dimensional Euclidean space
Rn, which is where the state variables collected in z
assume values, is called the state space [in the enzyme
reaction example, this is the (s, c)-plane]. A solution
z(t) of Eqn (6) corresponding to any given initial con-
dition z(0) ¼ z0 and plotted in the state space for all t
is a trajectory, whereas any value z* satisfying
f(z*) ¼ 0 is a steady state. [In the example above, the
condition f(s*, c*) ¼ 0 is fulfilled when v1 ¼ v2 ¼ 0,
cf. Eqn (2), and therefore the unique steady state of
that specific system is the equilibrium in Eqn (4) of
the enzymatic reaction.]
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Fig. 1. Graph of the (s, c)-plane for Eqns (2,3) with several trajecto-

ries corresponding to different initial conditions (round dots) and

the steady state (s*, c*) ¼ (0.003, 0.0043) (square dot). The rate

constants here are k1 ¼ 1.833, k)1 ¼ 0.25, k2 ¼ 2.5 and k)2 ¼
0.55, whereas etot ¼ 0.2 and p ¼ 0.1.
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accurate approximation of the SIM than the QSSA
manifold.

The ZDP

Here, we introduce the ZDP as an accurate generaliza-
tion of the QSSA. The ZDP manifold of order m
(where m can take the values 0, 1, 2, . . .) is defined to
be the set of points that satisfy the algebraic condition:

dmþ1!y

dtmþ1
¼ 0 ð15Þ

and denoted by ZDPm. As was the case with the
QSSA, !y denotes variables that can be assumed to be
in partial relaxation (i.e. variables that evolve over a
fast timescale). The time derivative in the ZDP condi-
tion given by Eqn (15) is calculated using Eqn (6), so
that this condition becomes:

0 ¼ d!y

dt
¼ f!y for m ¼ 0 ð16Þ

0 ¼ d2!y

dt2
¼
@f!y
@!x

f!x þ
@f!y
@!y

f!y for m ¼ 1 ð17Þ

and similarly for higher values of m (see also Doc. S1).
Plainly, the QSSA manifold and ZDP0 coincide, as

the conditions in Eqn (9) and Eqns (15,16) defining
them are identical: the QSSA and the zeroth-order
ZDP yield the same approximate constraining relation.
The ZDP manifolds of higher orders, in turn, do not
coincide with the QSSA manifold in general; for exam-
ple, ZDP1 generally differs from the QSSA manifold
because of the presence of the first term in the right-
hand side of Eqn (17). Instead, the ZDP conditions of
higher orders are natural extensions of the QSSA: they
also yield a system (Eqn 15) of algebraic equations,
and the ZDPm is the locus of points satisfying them.
The sole difference between the two approaches is that
the ZDP replaces the first-order time derivative
employed by the QSSA with higher-order time deriva-
tives; see Eqn (15).

Although technically more involved, this approach
has proven to perform well; indeed, the sequence of
manifolds ZDP0, ZDP1, .. . limits to a SIM and hence
serves to approximate an exact constraining relation
with arbitrary accuracy [31]. To gain insight into this
result, we recall that a SIM is the locus of points
where system evolution is slow: the time derivatives of
all orders of the state variables are small. On the
QSSA manifold, d!y=dt ¼ 0; nevertheless, the higher-
order time derivatives remain large on it. On ZDP1, in
turn, d2!y=dt2 ¼ 0 and, additionally, d!y=dt is small;
higher-order derivatives are, here also, large. More
generally, dmþ1!y=dtmþ1 is identically zero on ZDPm

and d!y=dt; . . . ; dm!y=dtm are small on it, as long as the
variables !y evolve over a fast timescale and the matrix
@f!y=@!y appearing in Eqn (17) is nonsingular [23,31].
Because the ZDPm with m > 1 achieves to bound
more time derivatives than the QSSA manifold, it is
also typically closer to a SIM. Alternatively, each time
differentiation of a solution to Eqn (6) amplifies its
fast component, and hence higher-order ZDP condi-
tions filter out this fast dynamics to successively higher
orders: points satisfying these conditions yield solu-
tions with fast components of smaller magnitude (i.e.
these points lie closer to a SIM).

In biochemical terms, and focusing on our enzyme
kinetics example to add concreteness to our exposition,
if substrate is injected into an enzyme assay at time
zero, one observes a rapid binding of substrate to
enzyme; accordingly, the concentration c of complex
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Example: Enzyme Kinetics

Substrate ṡ = ε
(
− s + (κ− λ) c + c s

)
s+ ε c+ p = 1

Complex ċ = s− (κ+ s) c c+ e = 1

parameterized by time; every point on the curve corre-
sponds to a value (s(t), c(t)), for some time t, and vice
versa (Fig. 1). It becomes evident that the evolution of s
and c towards their equilibrium values runs through two
distinct phases. In the first phase, c increases (or
decreases), whereas s remains essentially constant,
corresponding to an initial rapid binding of S to E (or
dissociation of C). In the second phase, both variables
evolve at similar rates towards their equilibrium values,
corresponding to the consumption of substrate by the
enzyme. The duration of the first phase is far shorter
than that of the second one, a fact which has led
researchers to label the dynamics driving the former
fast (or transient) and those driving the latter slow.
This fact also suggests that, except for a short initial
period, the evolution of the system is described by the
part of the trajectory corresponding to the second, slow
phase.
A related feature of the model given by Eqns (2,3)

(and one of central importance to the present study)
becomes apparent upon plotting the trajectories corre-
sponding to several initial conditions. In particular,
Fig. 1 shows that all trajectories approach a certain
curve in the (s, c)-plane during the first phase and stay
in a neighborhood of it during the second phase; for
the irreversible case, also [38]. This curve is called a
normally attracting, slow invariant manifold (SIM).
The SIM serves to link the full to the fully relaxed
dynamics because the system dynamics follows a cas-
cade from full (approach to the SIM) to partially
relaxed (close to the SIM) and, eventually, to fully
relaxed (close to the equilibrium). In this sense, SIMs
form the backbone on which the dynamics is organized
at intermediate timescales.
The SIM is the graph of a constraining relation,

namely a relation c ¼ c(s) dictating that, past the

transient phase, the complex concentration is approxi-
mately a function of the substrate concentration.
Knowledge of the constraining relation c ¼ c(s)
allows one to reduce Eqns (2,3) to the single ODE:

_s ¼ "k1ðetot " cðsÞÞsþ k"1cðsÞ ð5Þ

This ODE, together with the constraining relation
c ¼ c(s) and the conservation laws e(t) + c(t) ¼ etot
and p(t) ¼ p, describes the dynamics of the system at
the slow timescale.

General multiscale systems

Here, we generalize the notions introduced above to
more general multiscale systems. In what follows, we
use the term state variables to denote those time-depen-
dent variables in a biochemical system that fully
describe the system at any given moment. (State vari-
ables are, typically but not exclusively, molecular con-
centrations. In certain models, they can also be linear
combinations of such concentrations or other time-
dependent quantities, such as pH or membrane poten-
tial.) First, we collect the values of all n state variables
(where n is a natural number depending on the
complexity of the system) at any time instant t in a col-
umn vector z(t). The time evolution of the components
of z is dictated by a set of state equations in the form
of ODEs:

_zðtÞ ¼ f ðzðtÞÞ ð6Þ

where f is a vector-valued function of n variables
and with n components. In the case of the simple
enzyme reaction model in the previous section, we
have:

n ¼ 2; z ¼
s

c

! "
and

f ðs; cÞ ¼
k"1c " k1ðetot " cÞs

ðk1sþ k"2pÞðetot " cÞ " ðk"1 þ k2Þc

! "

[see Eqns (2,3)]. The n-dimensional Euclidean space
Rn, which is where the state variables collected in z
assume values, is called the state space [in the enzyme
reaction example, this is the (s, c)-plane]. A solution
z(t) of Eqn (6) corresponding to any given initial con-
dition z(0) ¼ z0 and plotted in the state space for all t
is a trajectory, whereas any value z* satisfying
f(z*) ¼ 0 is a steady state. [In the example above, the
condition f(s*, c*) ¼ 0 is fulfilled when v1 ¼ v2 ¼ 0,
cf. Eqn (2), and therefore the unique steady state of
that specific system is the equilibrium in Eqn (4) of
the enzymatic reaction.]
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0.55, whereas etot ¼ 0.2 and p ¼ 0.1.
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accurate approximation of the SIM than the QSSA
manifold.

The ZDP

Here, we introduce the ZDP as an accurate generaliza-
tion of the QSSA. The ZDP manifold of order m
(where m can take the values 0, 1, 2, . . .) is defined to
be the set of points that satisfy the algebraic condition:

dmþ1!y

dtmþ1
¼ 0 ð15Þ

and denoted by ZDPm. As was the case with the
QSSA, !y denotes variables that can be assumed to be
in partial relaxation (i.e. variables that evolve over a
fast timescale). The time derivative in the ZDP condi-
tion given by Eqn (15) is calculated using Eqn (6), so
that this condition becomes:

0 ¼ d!y

dt
¼ f!y for m ¼ 0 ð16Þ

0 ¼ d2!y

dt2
¼
@f!y
@!x

f!x þ
@f!y
@!y

f!y for m ¼ 1 ð17Þ

and similarly for higher values of m (see also Doc. S1).
Plainly, the QSSA manifold and ZDP0 coincide, as

the conditions in Eqn (9) and Eqns (15,16) defining
them are identical: the QSSA and the zeroth-order
ZDP yield the same approximate constraining relation.
The ZDP manifolds of higher orders, in turn, do not
coincide with the QSSA manifold in general; for exam-
ple, ZDP1 generally differs from the QSSA manifold
because of the presence of the first term in the right-
hand side of Eqn (17). Instead, the ZDP conditions of
higher orders are natural extensions of the QSSA: they
also yield a system (Eqn 15) of algebraic equations,
and the ZDPm is the locus of points satisfying them.
The sole difference between the two approaches is that
the ZDP replaces the first-order time derivative
employed by the QSSA with higher-order time deriva-
tives; see Eqn (15).

Although technically more involved, this approach
has proven to perform well; indeed, the sequence of
manifolds ZDP0, ZDP1, .. . limits to a SIM and hence
serves to approximate an exact constraining relation
with arbitrary accuracy [31]. To gain insight into this
result, we recall that a SIM is the locus of points
where system evolution is slow: the time derivatives of
all orders of the state variables are small. On the
QSSA manifold, d!y=dt ¼ 0; nevertheless, the higher-
order time derivatives remain large on it. On ZDP1, in
turn, d2!y=dt2 ¼ 0 and, additionally, d!y=dt is small;
higher-order derivatives are, here also, large. More
generally, dmþ1!y=dtmþ1 is identically zero on ZDPm

and d!y=dt; . . . ; dm!y=dtm are small on it, as long as the
variables !y evolve over a fast timescale and the matrix
@f!y=@!y appearing in Eqn (17) is nonsingular [23,31].
Because the ZDPm with m > 1 achieves to bound
more time derivatives than the QSSA manifold, it is
also typically closer to a SIM. Alternatively, each time
differentiation of a solution to Eqn (6) amplifies its
fast component, and hence higher-order ZDP condi-
tions filter out this fast dynamics to successively higher
orders: points satisfying these conditions yield solu-
tions with fast components of smaller magnitude (i.e.
these points lie closer to a SIM).

In biochemical terms, and focusing on our enzyme
kinetics example to add concreteness to our exposition,
if substrate is injected into an enzyme assay at time
zero, one observes a rapid binding of substrate to
enzyme; accordingly, the concentration c of complex
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Example: Catastrophic Predation

Predator ẋ1 = ε x1

(
a x2

x2 + d
− 1

)
exponential growth

single food source

Prey ẋ2 = x2

(
1− x2 −

a x1

x2 + d

)
logistic growth

fast adjustment to predators

Catastrophic collapse of the
prey population with

hardly any warning signal.
No build-up of the prey

colony as predator numbers
fall below criticality.

Instead, sudden build-up at
lower predator population.
[Similar to 1992 collapse of

Canadian cod fisheries.]

356 G. Hek

Fig. 3 Configuration of the slow manifolds for system (2.2) with 0 < d < 1 and a > (1+d)/(1−d). The
periodic orbit is the one constructed in Rinaldi and Muratori (1992): the touch down point Td is determined
by the v-coordinate of the fold (ū, v̄) and the take off point To is calculated in Rinaldi and Muratori (1992);
see Sect. 4

but arbitrary predator population. The manifolds are normally hyperbolic everywhere
but in

(
0, d

a

)
∈ M0

0 ∩ M1
0 and (ū, v̄) =

(
1−d

2 , (1+d)2

4a

)
∈ M1

0 for d < 1.

On M1
0 the flow with respect to time τ = εt can be obtained by writing M1

0 as
a graph of a function in the slow variable v. If 0 < d < 1, this cannot be done in a
global way, so we write M1

0 as the union of two hyperbolic parts and a third, small
part around the nonhyperbolic fold point (ū, v̄), i.e. as M1

0 = M+
0 ∪ M−

0 ∪ B(v̄, δ).
Here 0 < δ % 1,

M±
0 :=

{
(u, v)|u = u±(v) := 1

2
(1−d ±

√
(1 + d)2−4av), u ≥ 0, 0 ≤ v ≤ v̄− δ

2

}

and B(v̄, δ) is an open δ-neighbourhood within M1
0 of (ū, v̄). If d ≥ 1 we write

M1
0 = M+

0 , so that the flow can for all d > 0 be written as v′ = v
(

u(a−1)−d
u±(v)+d

)
on

M±
0 .
The flow on M1

0 has critical points v = 0 (repelling, on the branch M+
0 ) and

v = d(a−1−d)
(a−1)2 , which is a repeller on M−

0 if a > 1+d
1−d and an attractor on M+

0 if

1 < a < 1+d
1−d (see Fig. 3).

The biological meaning of this flow is the following. Assume that for a constant
predator population v1 )= v̄ the prey is in an equilibrium state (u1, v1) ∈ M±

0 . If
the size of the predator population now starts to change slowly to a new value v2, a
new equilibrium (u2, v2) ∈ M±

0 will form, according to the predator–prey interaction
on the nullcline M0±. Only if v passes the value v̄, this will not be a continuous
process.

Theorem 2 now assures that for sufficiently small ε )= 0 the critical manifolds M±
0

persist as perturbed manifolds M±
ε that are invariant for the flow with ε )= 0. The slow

flow on M±
ε is approximated by the limiting slow flow v′ = v

(
u(a−1)−d
u±(v)+d

)
. In terms

123

[1992] Rinaldo & Muratori, Ecol Model 61
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Example: Travelling Pulses

FitzHugh–Nagumo wt = ε (u− γ w) recovery variable

Neuron Model ut = uxx + f(u)− w excitation variable

[1996] Jones, Kaper & Kopell, SIMA 27
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Example: Travelling Pulses

ċ = ε 0

Existence of ẇ = −ε
c

(u− γ w)

Travelling Waves u̇ = v
v̇ = −c u− f(u) + w

[1996] Jones, Kaper & Kopell, SIMA 27
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Example: Coupled Enzymatic Reactions

ẋp = −k1 xp (yT − yp − cx − cy − cey)− k1 xp (ET
1 − cex)

+k−1 cex + (k−1 + k2) cy + k2 cx
ẏp = −k1 yp (xT − xp − cx − cy − cex)− k1 yp (ET

2 − cey)
+k−1 cey + (k−1 + k2) cx + k2 cy

ċx = k1 yp (xT − xp − cx − cy − cex)− (k−1 + k2) cx
ċy = k1 xp (yT − yp − cx − cy − cey)− (k−1 + k2) cy
ċex = k1 xp (ET

1 − cex)− (k−1 + k2) cex
ċey = k1 yp (ET

2 − cey)− (k−1 + k2) cey

Author's personal copy

dCx

dt
¼ k1ðXT#Xp#Cx#Cy#Ce

x Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ X

Yp#ðk#1þk2ÞCx,

dCy

dt
¼ k1ðYT#Yp#Cx#Cy#Ce

yÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ Y

Xp#ðk#1þk2ÞCy,

dCe
x

dt
¼ k1XpðET

1#Ce
x Þ|fflfflfflfflffl{zfflfflfflfflffl}

¼ E1

#ðk#1þk2ÞCe
x ,

dCe
y

dt
¼ k1YpðET

2#Ce
yÞ|fflfflfflfflffl{zfflfflfflfflffl}

¼ E2

#ðk#1þk2ÞCe
y , ð3:1Þ

with initial values

Cxð0Þ ¼ 0, Cyð0Þ ¼ 0, Ce
x ð0Þ ¼ 0, Ce

yð0Þ ¼ 0: ð3:2Þ

The initial values of Xp and Yp are arbitrary.
Following the approach in the previous section, we reduce

Eq. (3.1) to a two dimensional system. Assuming the validity of
the tQSSA, we obtain an approximating differential-algebraic
system. Solving the algebraic equations, which are linear in the
original coordinates, leads to a closed, reduced system of ODEs.
We end by discussing the validity of the tQSSA.

3.1. New coordinates and reduction under the tQSSA

To extend the tQSSA we define a new set of variables by
adding the concentration of the free state of a species to the
concentrations of all intermediate complexes formed by that
particular species as reactant (Ciliberto et al., 2007):

X p :¼ XpþCyþCe
x ,

Y p :¼ YpþCxþCe
y : ð3:3Þ

Under the tQSSA, the intermediate complexes equilibrate
quickly compared to the variables X p and Y p. In the coordinates
defined by Eq. (3.3), Eq. (3.1) takes the form

dX p

dt
¼ k2Cx#k2Ce

x , ð3:4aÞ

dY p

dt
¼ k2Cy#k2Ce

y , ð3:4bÞ

0¼ k1ðXT#X p#CxÞðY p#Cx#Ce
yÞ#ðk#1þk2ÞCx, ð3:4cÞ

0¼ k1ðYT#Y p#CyÞðX p#Cy#Ce
x Þ#ðk#1þk2ÞCy, ð3:4dÞ

0¼ k1ðX p#Cy#Ce
x ÞðE

T
1#Ce

x Þ#ðk#1þk2ÞCe
x , ð3:4eÞ

0¼ k1ðY p#Cx#Ce
yÞðE

T
2#Ce

yÞ#ðk#1þk2ÞCe
y : ð3:4fÞ

Solving the coupled system of quadratic equations (3.4c)–(3.4f) in
terms of X p,Y p appears to be possible only numerically, as it is
equivalent to finding the roots of a degree 16 polynomial
(Ciliberto et al., 2007). However, since we are interested in the
dynamics of Xp and Yp, we can proceed as in the previous section:
using Eq. (3.3) in (3.4c)–(3.4f) gives a linear system in Cx, Cy, Cx

e, Cy
e.

Defining km :¼ ðk#1þk2Þ=k1, this system can be written in matrix
form as

Ypþkm Yp Yp 0

Xp Xpþkm 0 Xp

0 0 Xpþkm 0

0 0 0 Ypþkm

2

66664

3

77775

Cx

Cy

Ce
x

Ce
y

2

66664

3

77775
¼

YpðXT#XpÞ
XpðYT#YpÞ

XpET
1

YpET
2

2

66664

3

77775
:

ð3:5Þ

The coefficient matrix above is invertible and Eq. (3.5) can be
solved to obtain Cx, Cy, Cx

e, Cy
e as functions of Xp, Yp. Denoting the

resulting solutions as Cx(Xp, Yp), Cy(Xp, Yp), Cx
e(Xp, Yp), Cy

e(Xp, Yp) and
using them in Eqs. (3.4a) and (3.4b) we obtain the closed system
of equations

d
dt

X p

Y p

" #

¼ k2

CxðXp,YpÞ#Ce
x ðXp,YpÞ

CyðXp,YpÞ#Ce
yðXp,YpÞ

" #

:

Reverting to the original coordinates, Xp and Yp, and using the
chain rule gives

d
dt

XpþCyðXp,YpÞþCe
x ðXp,YpÞ

YpþCxðXp,YpÞþCe
yðXp,YpÞ

" #
¼ k2

CxðXp,YpÞ#Ce
x ðXp,YpÞ

CyðXp,YpÞ#Ce
yðXp,YpÞ

" #

¼)
1þ @Cy

@Xp
þ @Ce

x
@Xp

@Cy

@Yp
þ @Ce

x
@Yp

@Cx
@Xp
þ @Ce

y

@Xp
1þ @Cx

@Yp
þ @Ce

y

@Yp

2

64

3

75
d
dt

Xp

Yp

" #

¼ k2

CxðXp,YpÞ#Ce
x ðXp,YpÞ

CyðXp,YpÞ#Ce
yðXp,YpÞ

" #

:

ð3:6Þ

The initial values of Eq. (3.6) are determined by projecting the
initial values, given by Eq. (3.2), onto the slow manifold. Unfortu-
nately, they can be expressed only implicitly. The reduction from
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Fig. 2. A simplified description of interactions between two regulators of the G2-to-mitosis phase (G2/M) transition in the eukaryotic cell cycle (Novak and Tyson, 1993)
(See text). (a) X and Y phosphorylate and deactivate each other. For instance, the protein X exists in a phosphorylated Xp and unphosphorylated X state, and the conversion X
to Xp is catalyzed by Yp. The conversion of Xp to X is catalyzed by the phosphatase E1. (b) Comparison of the numerical solution of Eqs. (3.1) and (3.8). Here k1 ¼ 5, k#1¼1,
k2 ¼ 1, E1

T ¼ 10, E2
T ¼ 2, XT ¼ 10, YT ¼ 10.1 as in Ciliberto et al. (2007). The initial values for Eq. (3.1) are X(0) ¼ 10, Y(0) ¼ 1.1, Xp(0) ¼ 0, Yp(0) ¼ 9, Cx(0) ¼ 0, Cy(0) ¼ 0,

Cx
e(0) ¼ 0, Cy

e(0) ¼ 0, E1(0) ¼ 10, E2(0) ¼ 2. The initial values of the reduced system, bX pð0Þ ¼ 0:12,bY pð0Þ ¼ 0:83 are obtained by the projection onto the slow manifold defined
by Eq. (3.7).
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Figure 9. Projection of the slow, reduced dynamics on the
(S, E)�plane corresponding to the QSSA manifold (solid dots),
the ZDP1 manifold (blank dots), and the full system (48) (thin
curves) for the first parameter set (49). The projections on the
(S, E)�plane of all initial conditions lie on the boundary of the
curvilinearly triangular region where the ZDP1 manifold is posi-
tive. The steady state lies approximately at (0.47, 0.02).

model. The first striking discrepancy between the data generated by the QSSA-
reduced model and the full model is evident in that QSSA severely overestimates
the extent to which S decreases as the solution approaches the steady state: QSSA
predicts a substantial decrease whereas the actual one is barely noticeable, see
figure 9. The second discrepancy concerns the rate at which the concentrations
approach their steady state values: it it plain to see from the same figure that
QSSA predicts a rate of decrease for E which is approximately 50% higher than the
actual one.

An additional point of interest becomes apparent once we plot the reduced dy-
namics for a di↵erent set of parameters, namely,

b1 = e1 = 5, b�1 = e�1 = 10, b2 = e2 = 2,
d1 = f1 = 1, d�1 = f�1 = 3 d2 = f2 = 40.

(50)

The total protein concentrations are set to the values ST = ET = 1 and DT =
FT = 2. Note that, for these values of the reaction rate constants, the state space
exhibits the mirror symmetry

(S, E, S : E, E : S, D : S⇤, F : E⇤)$ (E, S, E : S, S : E, F : E⇤, D : S⇤),

which induces the symmetry S $ E in the reduced dynamics. Representative
trajectories of this reduced dynamics are plotted in figure 10. Here also, the tra-
jectories corresponding to the ZDP1�reduced model describe the evolution of the
system during this slow phase much better than their QSSA-generated counterparts.
These latter trajectories approach, here also, their steady state values substantially
faster than in reality and exhibit large excursions (overshoots) of S and E where

[2011] Kumar & Josić, J Theor Biol 278 [2012] Zagaris, Vandekerckhove, Gear, Kaper & Keverekidis, DCDS-A 32
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Example: Coupled Enzymatic Reactions

ẋp = −k1 xp (yT − yp − cx − cy − cey)− k1 xp (ET
1 − cex)

+k−1 cex + (k−1 + k2) cy + k2 cx
ẏp = −k1 yp (xT − xp − cx − cy − cex)− k1 yp (ET

2 − cey)
+k−1 cey + (k−1 + k2) cx + k2 cy

ċx = k1 yp (xT − xp − cx − cy − cex)− (k−1 + k2) cx
ċy = k1 xp (yT − yp − cx − cy − cey)− (k−1 + k2) cy
ċex = k1 xp (ET

1 − cex)− (k−1 + k2) cex
ċey = k1 yp (ET

2 − cey)− (k−1 + k2) cey

Author's personal copy

dCx

dt
¼ k1ðXT#Xp#Cx#Cy#Ce

x Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ X

Yp#ðk#1þk2ÞCx,

dCy

dt
¼ k1ðYT#Yp#Cx#Cy#Ce

yÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ Y

Xp#ðk#1þk2ÞCy,

dCe
x

dt
¼ k1XpðET

1#Ce
x Þ|fflfflfflfflffl{zfflfflfflfflffl}

¼ E1

#ðk#1þk2ÞCe
x ,

dCe
y

dt
¼ k1YpðET

2#Ce
yÞ|fflfflfflfflffl{zfflfflfflfflffl}

¼ E2

#ðk#1þk2ÞCe
y , ð3:1Þ

with initial values

Cxð0Þ ¼ 0, Cyð0Þ ¼ 0, Ce
x ð0Þ ¼ 0, Ce

yð0Þ ¼ 0: ð3:2Þ

The initial values of Xp and Yp are arbitrary.
Following the approach in the previous section, we reduce

Eq. (3.1) to a two dimensional system. Assuming the validity of
the tQSSA, we obtain an approximating differential-algebraic
system. Solving the algebraic equations, which are linear in the
original coordinates, leads to a closed, reduced system of ODEs.
We end by discussing the validity of the tQSSA.

3.1. New coordinates and reduction under the tQSSA

To extend the tQSSA we define a new set of variables by
adding the concentration of the free state of a species to the
concentrations of all intermediate complexes formed by that
particular species as reactant (Ciliberto et al., 2007):

X p :¼ XpþCyþCe
x ,

Y p :¼ YpþCxþCe
y : ð3:3Þ

Under the tQSSA, the intermediate complexes equilibrate
quickly compared to the variables X p and Y p. In the coordinates
defined by Eq. (3.3), Eq. (3.1) takes the form

dX p

dt
¼ k2Cx#k2Ce

x , ð3:4aÞ

dY p

dt
¼ k2Cy#k2Ce

y , ð3:4bÞ

0¼ k1ðXT#X p#CxÞðY p#Cx#Ce
yÞ#ðk#1þk2ÞCx, ð3:4cÞ

0¼ k1ðYT#Y p#CyÞðX p#Cy#Ce
x Þ#ðk#1þk2ÞCy, ð3:4dÞ

0¼ k1ðX p#Cy#Ce
x ÞðE

T
1#Ce

x Þ#ðk#1þk2ÞCe
x , ð3:4eÞ

0¼ k1ðY p#Cx#Ce
yÞðE

T
2#Ce

yÞ#ðk#1þk2ÞCe
y : ð3:4fÞ

Solving the coupled system of quadratic equations (3.4c)–(3.4f) in
terms of X p,Y p appears to be possible only numerically, as it is
equivalent to finding the roots of a degree 16 polynomial
(Ciliberto et al., 2007). However, since we are interested in the
dynamics of Xp and Yp, we can proceed as in the previous section:
using Eq. (3.3) in (3.4c)–(3.4f) gives a linear system in Cx, Cy, Cx

e, Cy
e.

Defining km :¼ ðk#1þk2Þ=k1, this system can be written in matrix
form as

Ypþkm Yp Yp 0

Xp Xpþkm 0 Xp

0 0 Xpþkm 0

0 0 0 Ypþkm

2

66664

3

77775

Cx

Cy

Ce
x

Ce
y

2

66664

3

77775
¼

YpðXT#XpÞ
XpðYT#YpÞ

XpET
1

YpET
2

2

66664

3

77775
:

ð3:5Þ

The coefficient matrix above is invertible and Eq. (3.5) can be
solved to obtain Cx, Cy, Cx

e, Cy
e as functions of Xp, Yp. Denoting the

resulting solutions as Cx(Xp, Yp), Cy(Xp, Yp), Cx
e(Xp, Yp), Cy

e(Xp, Yp) and
using them in Eqs. (3.4a) and (3.4b) we obtain the closed system
of equations

d
dt

X p

Y p

" #

¼ k2

CxðXp,YpÞ#Ce
x ðXp,YpÞ

CyðXp,YpÞ#Ce
yðXp,YpÞ

" #

:

Reverting to the original coordinates, Xp and Yp, and using the
chain rule gives

d
dt

XpþCyðXp,YpÞþCe
x ðXp,YpÞ

YpþCxðXp,YpÞþCe
yðXp,YpÞ

" #
¼ k2

CxðXp,YpÞ#Ce
x ðXp,YpÞ

CyðXp,YpÞ#Ce
yðXp,YpÞ

" #

¼)
1þ @Cy

@Xp
þ @Ce

x
@Xp

@Cy

@Yp
þ @Ce

x
@Yp

@Cx
@Xp
þ @Ce

y

@Xp
1þ @Cx

@Yp
þ @Ce

y

@Yp

2
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3

75
d
dt

Xp

Yp

" #

¼ k2

CxðXp,YpÞ#Ce
x ðXp,YpÞ

CyðXp,YpÞ#Ce
yðXp,YpÞ

" #

:

ð3:6Þ

The initial values of Eq. (3.6) are determined by projecting the
initial values, given by Eq. (3.2), onto the slow manifold. Unfortu-
nately, they can be expressed only implicitly. The reduction from
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Fig. 2. A simplified description of interactions between two regulators of the G2-to-mitosis phase (G2/M) transition in the eukaryotic cell cycle (Novak and Tyson, 1993)
(See text). (a) X and Y phosphorylate and deactivate each other. For instance, the protein X exists in a phosphorylated Xp and unphosphorylated X state, and the conversion X
to Xp is catalyzed by Yp. The conversion of Xp to X is catalyzed by the phosphatase E1. (b) Comparison of the numerical solution of Eqs. (3.1) and (3.8). Here k1 ¼ 5, k#1¼1,
k2 ¼ 1, E1

T ¼ 10, E2
T ¼ 2, XT ¼ 10, YT ¼ 10.1 as in Ciliberto et al. (2007). The initial values for Eq. (3.1) are X(0) ¼ 10, Y(0) ¼ 1.1, Xp(0) ¼ 0, Yp(0) ¼ 9, Cx(0) ¼ 0, Cy(0) ¼ 0,

Cx
e(0) ¼ 0, Cy

e(0) ¼ 0, E1(0) ¼ 10, E2(0) ¼ 2. The initial values of the reduced system, bX pð0Þ ¼ 0:12,bY pð0Þ ¼ 0:83 are obtained by the projection onto the slow manifold defined
by Eq. (3.7).
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Figure 9. Projection of the slow, reduced dynamics on the
(S, E)�plane corresponding to the QSSA manifold (solid dots),
the ZDP1 manifold (blank dots), and the full system (48) (thin
curves) for the first parameter set (49). The projections on the
(S, E)�plane of all initial conditions lie on the boundary of the
curvilinearly triangular region where the ZDP1 manifold is posi-
tive. The steady state lies approximately at (0.47, 0.02).

model. The first striking discrepancy between the data generated by the QSSA-
reduced model and the full model is evident in that QSSA severely overestimates
the extent to which S decreases as the solution approaches the steady state: QSSA
predicts a substantial decrease whereas the actual one is barely noticeable, see
figure 9. The second discrepancy concerns the rate at which the concentrations
approach their steady state values: it it plain to see from the same figure that
QSSA predicts a rate of decrease for E which is approximately 50% higher than the
actual one.

An additional point of interest becomes apparent once we plot the reduced dy-
namics for a di↵erent set of parameters, namely,

b1 = e1 = 5, b�1 = e�1 = 10, b2 = e2 = 2,
d1 = f1 = 1, d�1 = f�1 = 3 d2 = f2 = 40.

(50)

The total protein concentrations are set to the values ST = ET = 1 and DT =
FT = 2. Note that, for these values of the reaction rate constants, the state space
exhibits the mirror symmetry

(S, E, S : E, E : S, D : S⇤, F : E⇤)$ (E, S, E : S, S : E, F : E⇤, D : S⇤),

which induces the symmetry S $ E in the reduced dynamics. Representative
trajectories of this reduced dynamics are plotted in figure 10. Here also, the tra-
jectories corresponding to the ZDP1�reduced model describe the evolution of the
system during this slow phase much better than their QSSA-generated counterparts.
These latter trajectories approach, here also, their steady state values substantially
faster than in reality and exhibit large excursions (overshoots) of S and E where

[2011] Kumar & Josić, J Theor Biol 278 [2012] Zagaris, Vandekerckhove, Gear, Kaper & Keverekidis, DCDS-A 32
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Example: Computational Coarse-graining

Mesoscopic simulations
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Example: Computational Coarse-graining

Mesoscopic simulations −→ Macroscopic information
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The lifting step is a one-to-many map
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Lifting Scheme

Lift to a slow, normally attracting, invariant manifold

X

1X

1

X2

1
*X

[2003] Gear, Kevrekidis et al, Commun Math Sci 1
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Quasi-Steady State Assumption (QSSA)

Widely used in enzyme kinetics

Well-diffused in other application areas

Chemical intuition needed to identify QSSA variables

[1993] Segel, Enzyme Kinetics
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Intrinsic Low-dimensional Manifold (ILDM)
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ILDM

Developed by combustion engineers

Mostly used in combustion problems

Suffers from the existence of ghost manifolds

[1997] Norris, NASA report
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Computational Singular Perturbation (CSP)

Same as ILDM but works with the Lie bracket [·, g] instead of with Dg

+

ILDM: Compute basis Ap s.t. A−1p Dgp Ap in canonical form

⇓
CSP: Compute basis Ap s.t. A−1p [Ap, gp] in canonical form

[v, g] = (Dg)v−(Dv)g −→ A−1[A, g] = A−1(Dg)A−A−1(DA)g

Canonization of A−1[A, g] is a PDE problem

Proceed iteratively
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CSP

Developed by combustion engineers

Diffused into biology & biochemistry

Enables a full timescale analysis

[2010] Kourdis, Goussis & Steuer, Phys D 239
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Zero-derivative Principle (ZDP)

Ẋ1 = G1(X)

Ẋ2 = G2(X)

∣∣∣∣ X1 parametrize Sε

• Fix X1 = X∗1

• Choose m ∈ N

• Approximate Sε(X
∗
1) by X∗2 solving

dmX2

dtm

∣∣
(X∗1,X

∗
2)
= 0 ZDP

d·
dt

=
(
DX1

·
)

G1 +
(
DX2

·
)

G2

||X∗2 − Sε(X
∗
1)|| = O(εm) — [1980] Lorenz, J Atmos Sci 37

A Zagaris Universiteit Twente. Multiscale Model Reduction DTU Winter School 2013 22 / 26



Zero-derivative Principle (ZDP)
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||X∗2 − Sε(X
∗
1)|| = O(εm) — [1980] Lorenz, J Atmos Sci 37
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ZDP

Component of equation–free computing

Applications in biochemistry, genetics, pattern formation . . .
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A Common Geometric Framework

All slaving relations can read B(x)g(x) = 0 for a matrix B(x)

QSSA ILDM CSP & ZDP

B(x) =


0 0 . . . 1 . . . 0
0 1 . . . 0 . . . 0
...

...
...

...
0 0 . . . 0 . . . 1


B(x) ⊥ slow
eigenspace
of Dg(x)

B(x) ⊥ slow
eigenspace
of [·, g(x)]
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⇓
Sε invariant ⇔ g(x) ∈ TxSε ⇔ B(x)g(x) = 0 ∧ span(B(x)) = NxSε

| |
span

(
B(x)

)
≈ NxSε ——– span

(
B(x)

)
≈ NxSε ⇒ Sapprox ≈ Sε
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⇓
Sε invariant ⇔ g(x) ∈ TxSε ⇔ B(x)g(x) = 0 ∧ span(B(x)) = NxSε

| |
span

(
B(x)

)
≈ NxSε ——– span

(
B(x)

)
≈ NxSε ⇒ Sapprox ≈ Sε

⇓
Approximation properties of Sapprox relative to Sε

A Zagaris Universiteit Twente. Multiscale Model Reduction DTU Winter School 2013 24 / 26



Analytic Results

CSP & ZDP ILDM QSSA

B(x) ⊥ slow
e−space of [·, g(x)]

B(x) ⊥ slow
e−space of Dg(x)

B =


0 0 . . . 1 . . . 0
0 1 . . . 0 . . . 0
...

...
...

...
0 0 . . . 0 . . . 1


• B X
• Sapprox X

• B leading order X
• Sapprox second order X

• B chosen haphazardly
• Sapprox leading order X
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The Plan

Introduction to GSPT today

Qualitative introduction to multiscale reduction today

Quantitative introduction to multiscale reduction tomorrow

Theoretical and computational exercises tomorrow

Final project near future

A Zagaris Universiteit Twente. Multiscale Model Reduction DTU Winter School 2013 26 / 26


