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1. Scaling, perturbation methods, and singular limits



Scaling and perturbation arguments are crucial in
applied mathematics

context: ODE or PDE models

processes on very different scales are
approximately decoupled

neglecting couplings gives simpler models

simple theories are limits of more general
theories

simple models must be coupled to approximate
full problem



Rescaling makes hidden details visible

“macro” - state: U(X,T )

“micro” - state: u(x, t) ε→ 0, δ → 0



Rescaling makes hidden details visible

“macro” - state: U(X,T )

scalings for u? u = εαδβU matching



This can lead to regular perturbation problems

full problem: F (u, ε) = 0, solution uε, ε� 1

limit problem: F (u, 0) = 0, solution u0

regular perturbation:

1 uε → u0 smoothly

uε = u0 + εu1 + ε2u2 + · · ·

2 convergent expansion

3 implicit function theorem



Typically this leads to singular perturbation problems

full problem: F (u, ε) = 0, solution uε, ε� 1

limit problem: F (u, 0) = 0, solution u0

singular perturbation:

1 u0 may develop singularities
2 no smooth approximation by a single limit

problem

3 several scalings with different limit problems
are needed

4 approximation by matched asymptotic
expansions



2. Examples



Example 1: singularly perturbed second order ODE

singularly perturbed second order ODE

εü+ p(t)u̇+ q(t)u = f(t)

initial - or boundary value problem

limit problem

p(t)u̇+ q(t)u = f(t)

first order ODE; simpler, but cannot satisfy all
initial or boundary conditions

⇒ boundary layers, internal layers



Rescaling gives another limit problem

t ∈ [0, T ], p(0) = λ > 0 ⇒ boundary layer
near t = 0, fast scale τ := t

ε

u′′ + p(ετ)u′ + εq(ετ)u = εf(εt)

limit problem, first order ODE, simpler!

u′′ + p(0)u′ = 0, u(τ) ∼ e−λτ = e−
λt
ε

∃ exponential decaying components, matched
asymptotic expansion

u(t, ε) = u0(t) + u0(τ) +O(ε)



A boundary layer occurs...

http://www.scholarpedia.org/article/Singular−perturbation−theory



Example 2: fast-slow systems

singularly perturbed systems of ODEs in standard
form

εẋ = f(x, y, ε)

ẏ = g(x, y, ε)
0 ≤ ε� 1

x ∈ Rm fast , y ∈ Rn slow, t ∈ R time

mathematics: interesting and accessible dynamics

applications: biology, chemistry, electrical
engineering, mechanics,...



Example 3: systems of singularly perturbed reaction
diffusion equations

ut = ε2∆u+ f(u, v)

δvt = ∆v + g(u, v)

ε ∈ (0,∞) different speeds of diffusion

δ ∈ (0,∞) different reaction speeds

pattern formation: travelling waves, spikes,
spiral waves,...

existence, stability, bifurcations,...

stationary case in 1-d ⇒ back to fast-slow
systems



Example 4: vanishing viscosity for hyperbolic
conservation laws

u ∈ Rn, x ∈ R, t > 0, (also x ∈ Rd)

ut + f(u)x = ε(B(u)ux)x

flux f : Rn → Rn smooth; diffusion matrix B(u)
smooth, positiv (semi)definit, ε� 1

limit problem: hyperbolic conservation law

ut + f(u)x = 0

solutions develop singularities (shocks) in finite time

many deep results but also many open questions!



Example 5: Navier Stokes equations for large
Reynolds number

velocity u ∈ R3, pressure p ∈ R, x ∈ Rd,
d = 2, 3, t ∈ R, Reynolds number Re = UL/ν,
ε := 1/Re� 1

ut + (u · ∇)u+∇p = ε∆u

∇ · u = 0

limit problem: Euler equations

ut + (u · ∇)u+∇p = 0

∇ · u = 0

many deep results but also many open questions!



L. Prandtl created singular perturbation theory to
explain boundary layers of fluids near walls (1904)

x ∈ Ω ⊂ Rd, boundary conditions at ∂Ω

Navier Stokes: u |∂Ω= 0, no slip at ∂Ω

Euler equations: u · n |∂Ω= 0, no flow through ∂Ω



Reality is much more multiscale!



Reality is much more multiscale!



Example 6: (semi)classical limit of Schrödinger
equation

wave function ψ(t, x), potential V (x)

iεψt = −ε2∆ψ + V (x)ψ

limit ε→ 0 corresponds to

Quantum mechanics → classical mechanics

many deep results but also many open questions!



Schrödinger equation was (is!) very influential for
development of singular perturbation theoy

eigenvalue problem in 1-d, eigenvalue: energy E

ε2ψxx = (V (x)− E)ψ, ψ(±∞) = 0

layer behaviour for V (x) > E, classically
forbidden region

fast oscillations for V (x) < E, classically
allowed region

turning points at V (x) = E !

classical approach: WKB method



EVP for 1-d Schrödinger equation is a fast-slow
problem

ε2ψxx = (V (x)− E)ψ, ψ(±∞) = 0

define

u :=
εψx
ψ

u satisfies fast-slow Riccati equation

εu̇ = V (x)− E − u2

ẋ = 1



Singular limits are important and interesting - also
from the dynamical systems and geometric point of
view

shift from finding approximate solutions to
qualitative understanding of patterns and
dynamics

difficult for numerics: stiffness, resolving small
scales expensive

accessible to formal and rigorous analysis

analysis: difficulties but also advantages

getting the geometry right helps

lots of things to discover - even in fairly simple
problems



3. Fast-slow systems



Important biological processes are periodic on very
different time scales

Rhythm Period

Neural rhythms 0.01 - 1 s
Cardiac rhythm 1 s
Calzium-oszillations 1 s – min
Biochemical oscillations 1 min – 20 min
Mitotic cycle 10 min – 24 h
Hormonal rhythms 10 min – 24 h
Circadian rhythm 24 h
Ovarian cycle 28 days
Annual rhythms 1 year
Ecological oscillations years

A. Goldbeter (1996)



Most of these processes show fast-slow dynamics

γ- and β - oscillations in human brain
38 Hz and 42Hz, units: 100 ms, 1mV

mixed mode oscillations and delay effects

mechanisms? classification? noise?



Modelling of processes on very different time scales
leads to fast-slow dynamical systems

slow processes coupled to fast processes

singularly perturbed systems of ODEs

εẋ = f(x, y, ε)

ẏ = g(x, y, ε)
0 ≤ ε� 1

x ∈ Rn fast , y ∈ Rm slow, t ∈ R time

standard form, global splitting

particularly relevant in biology



Singularly perturbed (fast-slow) ODEs in standard
form require (at least) two scalings

εẋ = f(x, y, ε)
ẏ = g(x, y, ε)

(1)

x fast, y slow, ε� 1, slow time scale t,

transform to fast time scale τ := t/ε

x′ = f(x, y, ε)
y′ = εg(x, y, ε)

(2)

Syst. (1) and Syst. (2) equivalent for ε > 0



There are two distinct limiting systems for ε = 0

reduced problem
0 = f(x, y, 0)
ẏ = g(x, y, 0)

layer problem
x′ = f(x, y, 0)
y′ = 0

critical manifold S := {f(x, y, 0) = 0}

reduced problem dynamical system on S

x slaved to y through constraint f(x, y, 0) = 0

S “manifold” of equilibria for layer problem

y acts as parameter in layer problem



Two possible interpretations for ε� 1

main interest in slow process:

x fast process, which should be eliminated to
obtain simpler model for y

effects of fast processes?

main interest in fast process:

y slowly varying parameter

effect of slow changes in y on dynamics of x

simplest case: x′ = f(x, y), y′ = ε, y ∈ R



In “good” situations (pieces of) critical manifold S
persists as a slow manifold Sε

Sε is invariant manifold

Sε is O(ε) close to S

Sε depends smoothly on O(ε)

Sε inherits stablity properties from S

flow on Sε close to flow on S



The classical example: Van der Pol oscillator

εẋ = y − x3

3 + x
ẏ = a− x parameter a

reduced problem S : y = x3

3 − x, x ∈ R

0 = y − x3

3 + x
ẏ = a− x

layer problem

x′ = y − x3

3 + x
y′ = 0



Van der Pol oscillator has folded critical manifold S

layer problem: x′ = y − x3

3 + x

S attracting for x < −1 and x > 1

S repelling for −1 < x < 1

fold points at x = −1 and x = 1

reduced problem

y =
x3

3
− x ⇒ ẏ = (x2 − 1)ẋ = a− x

equilibrium at x = a

ẏ > 0, x < a, ẏ < 0, x > a

singular at x = ±1, except for a = ±1!



Much of this persists for 0 < ε� 1

relaxation oscillations for −1 < a < 1

excitability for a < −1 and a > 1

canards and canard cycles for special values of a
close to a = ±1



In higher dimensions fast-slow systems can be more
complicated

a “terrible” problem: Olsen model

a “good” problem: 3-d and 2-d Autocataltor



Olsen model describes oxidization of Nicotinamide
Adenine Dinucleotide (NADH)

Ȧ = k7 − k9A− k3ABY

Ḃ = k8 − k1BX − k3ABY

Ẋ = k1BX − 2k2X
2 + 3k3ABY − k4X + k6

Ẏ = 2k2X
2 − k3ABY − k5Y

A oxygen, B NADH, X, Y intermediate products

Reaction rates: k1 = 0.16, 0.35, 0.41

k2 = 250, k3 = 0.035, k4 = 20, k5 = 5.35,
k6 = 10−5, k7 = 0.8, k8 = 0.825, k9 = 0.1



The Olsen model has complicated dynamics

a) k1 = 0.16, b) k1 = 0.35, c) k1 = 0.41

slow-fast dynamics: a) and b) mixed-mode
oscillations or chaotic, c) relaxation oscillations

Goal: understand mechanisms of these patterns and
bifurcations, very sensitive parameter dependence



Visualization in phase space shows more details

slow dynamics in A, B close to X, Y ≈ 0,

fast dynamics in A,B,X, Y away from X, Y ≈ 0,



Scaling A, B, X, and Y gives a slow-fast system

ȧ = θ − αa− aby
ḃ = ν(1− bx− aby)

ε2ẋ = bx− x2 + 3aby − βx+ δ

ε2ẏ = x2 − y − aby

ν ≈ 10−1, θ, α, β ≈ 1, ε ≈ 10−2, δ ≈ 10−5

ε, ν determine time scales:
a, b slow variables x2, y2 fast variables;
ν � 1 ⇒ b is slower than a

α ∼ k1, δ ∼ k6, bifurcation parameters



Finding the scaling is not easy

A =
k1k5

k3

√
2k2k8

a, B =

√
2k2k8

k1
b

X =
k8

2k2
x, Y =

k8

k5
y

T =
k1k5

k3k8

√
2k2k8

t

phase space: a, b, x, y ≥ 0



Olsen model has a complicated critical manifold

ȧ = θ − αa− aby
ḃ = ν(1− bx− aby)

ε2ẋ = bx− x2 + 3aby − βx+ δ

ε2ẏ = x2 − y − aby

complicated critical manifold S

bx− x2 + 3aby − βx+ δ = 0

x2 − y − aby = 0

further complications:

impact of δ 6= 0 versus δ = 0

for x, y large different scaling needed



Good scaling is a bit like magic

large terms dominate small terms

finding a good scaling is nontrivial!

what is a good scaling?

nonlinear problem ⇒ good scaling depends on
position in phase space
often there exist several good scalings

x′ = −x+ εx+ εx2, x ∈ R, ε� 1

x = O(1) =⇒ x′ = −x+O(ε)

x = O(ε−1), x =
X

ε
=⇒ X ′ = −X +X2 +O(ε)



4. Geometric Singular Perturbation Theory



Singularly perturbed (fast-slow) ODEs in standard
form require (at least) two scalings

εẋ = f(x, y, ε)
ẏ = g(x, y, ε)

x fast, y slow, ε� 1, slow time scale t,

transform to fast time scale τ := t/ε

x′ = f(x, y, ε)
y′ = εg(x, y, ε)

systems equivalent for ε > 0



There are two distinct limiting systems for ε = 0

reduced problem
0 = f(x, y, 0)
ẏ = g(x, y, 0)

layer problem
x′ = f(x, y, 0)
y′ = 0

critical manifold S := {f(x, y, 0) = 0}

reduced problem is a dynamical system on S.

S is a “manifold” of equilibria for layer problem.



Large pieces of critical manifold S can be described
as a graph

Solve f(x, y, 0) = 0 by implicit function theorem for

x = h(y)

when
∂f

∂x
(x, y, 0) regular

Reduced problem is essentially

ẏ = g(h(y), y, 0)

lifted to S via x = h(y)



Spectrum of linearization of layer problem
determines stability of S

(x0, y0) ∈ S, x0 equilibrium of x′ = f(x, y0, 0)

linearization A0 :=
∂f

∂x
(x0, y0, 0), spectrum σ

splits according to

Reλs < 0, Reλc = 0, Reλu > 0

in
σ = σs ∪ σc ∪ σu

with stable, center, and unstable eigenspaces Es,
Ec, and Eu

Rm = Es ⊕ Ec ⊕ Eu

x0 hyperbolic iff Ec = 0



Invariant manifold theory provides nonlinear analogs
to stable-, center-, unstable spaces

stable and unstable manifolds W s(x0) and
W u(x0) at hyperbolic equilibria x0

center-stable, center- and center-unstable
manifolds at non-hyperbolic equilibria x0

stable- and unstable manifolds are unique and
robust under perturbation

center manifolds more not unique; more delicate

local bifurcations take place within center
manifolds



Individual points of a critical manifolds are not
hyperbolic

Assume that S0 ⊂ S is given as a graph x = h(y)
Linearization of layer problem at point
(h(y), y) ∈ S)

x′ = f(x, y, 0)
y′ = 0

is A :=

(
fx fy
0 0

)
∃ trivial eigenvalue λ =0, multiplicity (at least) n;
eigenspace is tangent space of S
Proof: f(h(y), y) = 0 differentiate

fxhy + fy = 0 ⇒

(
hy

In×n

)
⊂ ker(A)



Pieces of critical manifolds can be normally
hyperbolic

Assume that S0 ⊂ S is given as a graph x = h(y)

Definition: S0 is normally hyperbolic iff:

1) linearization A no eigenvalues Reλ = 0, except
trivial eigenvalue λ = 0 with multiplicity n

2) S0 is compact

1) holds iff fx |S0
has no eigenvalues Reλ = 0

2) is a uniformity condition



GSPT based on invariant manifold theory allows to
go from ε = 0 to 0 < ε� 1

Theorem: S0 ⊂ S normally hyperbolic ⇒ S0

perturbs smoothly to slow manifold Sε for ε small
N. Fenichel (1979)



The dynamics on the slow manifold is a smooth
perturbation of the reduced problem

critical manifold S0: graph x = h0(y)

reduced problem: ẏ = g(h0(y), y, 0)

slow manifold Sε: graph x = h(y, ε), smooth
expansion:

h(y, ε) = h0(y) + εh1(y) + ε2h2(y) + · · ·

slow dynamics on Sε

ẏ = g(h(y, ε), y, ε) = g(h0(y), y, 0) +O(ε)



Slow manifold has stable and unstable manifolds

W s(Sε) and W u(Sε), smooth dependence on ε



In many applications critical manifolds are more
complicated

S has several normally hyperbolic branches
separated by non-hyberbolic submanifolds, e.g.
folds
S has bifurcation points or singularities
layer problem allows jumps (fast transitions)
between these branches
parameters µ ∈ Rp can be included as “trivial”
slow variables (with nontrivial effects!)

εẋ = f(x, y, µ, ε)
ẏ = g(x, y, µ, ε)
µ̇ = 0



5. A glimpse of applications and things to come



Fenichel’s normally hyperbolic GSPT explains many
phenomena and has many applications

nerve pulses Jones (1986, 1990)

pulses and other patterns in reaction diffusion
equations A. Doelman, B. Gardner, T. Kaper, B.

Sandstede, S. Schecter, A. Scheel,...(1990,...)

detonation waves Gasser + Sz. (1993)

viscous shock waves Freistühler + Sz. (2002, 2010)

issues: existence, stability and bifurcations



Fenichel theory can be used for three types of
problems

reduction to a single normally hyperbolic slow
manifold (often attracting); stucturally stable
properties of reduced flow persist.

connections between invariant objects contained
in two different normally hyberbolic slow
manifolds, i.e. heteroclinic orbits; needs
transversality arguments

connections involving additional passages close
to slow manifolds of saddle type; needs
transversality and “Exchange Lemma”

C. Jones, N. Kopell, T. Kaper,...



Singular heteroclinic orbits perturb to heteroclinic
orbits for 0 < ε� 1

Sz. (1991)



Pulse propagation in Fitzhugh-Nagumo equation

ut = uxx + f(u)− w

vt = ε(u− γw)

w = f(u) S-shaped f(u) = u(u− a)(1− u)

Reststate (u, v) = (0, 0)

travelling wave (u,w)(x, t) = (u,w)(x+ ct︸ ︷︷ ︸
:=τ

),

speed c

limτ→±∞(u,w)(τ) = (0, 0)

existence, stability



Pulse is homoclinic orbit of fast-slow system

u′ = v

v′ = cv − f(u) + w

w′ = ε(u− γw)/c

equilibrium (0, 0, 0), hyperbolic

one-dimensional unstable manifold W u

two-dimensional stable manifold W s

pulse: homoclinc orbit ω ⊂ W u ∩W s

homoclinic ∃ ⇔ c = c(ε)

u, v fast, w slow, add c′ = 0 as slow



Reduced problem and layer problem

0 = v

0 = cv − f(u) + w

ẇ = (u− γw)/c

one dimensional S w = f(u), v = 0

u′ = v

v′ = cv − f(u) + w

w′ = 0



Singular homoclinic orbit of travelling wave problem
for Fitzhugh-Nagumo equation



Particularly successful in “low” dimensions

m = 1, n = 1 one slow and one fast variable

m = 2, n = 1, two fast variables and one slow
variable

m = 1, n = 2, one fast variable and two slow
variables

m = 2, n = 2, two fast variables and two slow
variables

m large n = 1, 2, 3 global reduction to single
critical manifold



Singularities of S cause loss of normal hyperbolicity

singularities of S: folds,
bifurcation points, poles,...

⇒ ∂f
∂x singular!

loss of normal hyperbolicity
Fenichel theory does not
apply!

Blow-up method:
“clever” rescalings near singularities of S

singularities are “blown-up” to spheres,
cylinders, etc.

Dumortier + Roussarie (1996), Krupa + Sz. (2001)



The 3-d autocatalator has complicated fast-slow
dynamics

ȧ = µ+ c− a− ab2

εḃ = a− b+ ab2

ċ = b− c

2-dim folded critical
manifold S

a− b+ ab2 = 0

S = Sa ∪ pf ∪ Sr
Sa attracting

Sr repelling



Mixed mode oscillations are complicated periodic
solutions containing large and small oscillations

ȧ = µ+ c− a− ab2

εḃ = a− b+ ab2

ċ = b− c

12 periodische Lösung



Intersection of attracting and repelling slow
manifolds generates canards und mixed mode
oscillations

ȧ = µ+ c− a− ab2

εḃ = a− b+ ab2

ċ = b− c

12 periodische Lösung



Details of generic planar fold point are fairly
complicated

normal hyperbolicity breaks down at fold point

reduced flow singular at fold pint

important for relaxation oscillations

classical problem, many approaches and results

blow-up method
Dumortier + Roussarie (1996), Krupa + Sz. (2001)



Fold point: (0, 0) nonhyperbolic, blow-up method

Krupa, Sz. (2001)
x′ = −y + x2 + · · ·
y′ = −ε+ · · ·

asymptotics of Sa,ε ∩ Σout

map: π : Σin → Σout contraction, rate e−C/ε



One has to consider the extended system

x′ = f(x, y, ε)

y′ = εg(x, y, ε)

ε′ = 0

defining conditions of generic fold at origin
(x, y, ε) = (0, 0, 0)

f = 0, fx = 0, origin non-hyperbolic

g(0, 0, 0) 6= 0, reduced flow nondegenarate

fxx 6= 0, fy 6= 0

⇒ saddle node bifurcation in f = 0



It is straightforward to transform to normal form

x′ = −y + x2 +O(ε, xy, y2, x3)

y′ = ε(−1 +O(x, y, ε))

ε′ = 0

(0, 0, 0) is a very degenerate equilibrium

eigenvalue λ =, multiplicity three

blow-up the singularity



Blow-up corresponds to using (weighted) spherical
coordinates for (x, y, ε)

x = rx̄, y = r2ȳ, ε = r3ε̄

(x̄, ȳ, ε̄) ∈ S2, r ∈ R

singularity at origin is blown up to sphere r = 0



Blow-up makes hidden details visible and accessible
to analysis

blow-up is

clever rescaling
zooming into singularity
and compactification (of things that are
pushed to “infinity” by zooming in)



Blow-up of layer problem shows some details



More details live on the sphere



The full dynamics of the blown up fold point



Many details have to be filled in

computations in suitable charts

charts correspond to asymptotic regimes

gain hyperbolicity

gain transversality

invariant manifold theory, center manifolds,
Fenichel theory

local and global bifurcations

special functions: here Airy equation

regular perturbation arguments



Many applications need GSPT beyond the standard

no global separation into slow and fast variables

loss of normal hyperbolicity

dynamics on more than two distinct time-scales

several scaling regimes with different limiting
problems are needed

singular or non-uniform dependence on several
parameters

lack of smoothness

Motivation: applications from biology, chemistry,
and mechanics



6. Glycolytic oscillator



Singular dependence on two parameters in a model
of glycolytic oscillations

existence of a complicated limit cycle

desingularization by GSPT + blow up method

many time scales



Glycolysis is a complicated enzyme reaction:

sugar → water + CO2 + energy

subprocess: glucose α → pyruvat β + energy

α̇ = µ− φ(α, β)

β̇ = λφ(α, β)− β
φ(α, β) =

α2β2

L+ α2β2

L, λ� 1, 0 < µ < 1

L. Segel, A. Goldbeter, Scaling in biochemical kinetics:

dissection of a relaxation oscillator, J. Math. Bio. (1994)√
λ/L� 1/

√
λ� 1

formally
=⇒ periodic solution



Numerical simulation for L = 5× 106, λ = 40, µ = 0.15
shows limit cycle

L large, λ fixed: classical relaxation oscillations
L, λ both large: more complicated



For λ, L→∞ the variables α, β are large ⇒ rescaling

ε :=
√
λ/L, δ := 1/

√
λ, a := εα, b = δ2β

a′ = ε

(
µ− a2b2

δ2 + a2b2

)
b′ =

a2b2

δ2 + a2b2
− b+ δ2

a slow, b fast with respect to ε

Goldbeter-Segel condition: ε� δ � 1

ε→ 0 “standard” , δ → 0 “singular” ?



Critical manifold has two folds for δ > 0, ε = 0

Sδ = {(a, b) : a2b2(1− b) + δ2(a2b2− b+ δ2) = 0}

=⇒ relaxation oscillations ∃ for δ > 0 and ε� 1



Critical manifold Sδ is singular for δ → 0

Sδ : a2b2(1− b) + δ2(a2b2 − b+ δ2) = 0

S0 : a2b2(1− b) = 0

a = 0, b = 0
non-hyperbolic

b = 1 hyperbolic

desingularization: blow-up (with respect to δ)



Consider the extended system in (a, b, δ) space

vector field Xε

a′ = εf(a, b, δ)

b′ = g(a, b, δ)

δ′ = 0

(ε, δ) = (0, 0) degenerate

lines la and lb of non-hyperbolic equilbria



Line lb is desingularized by first blow-up

Xε Xε

a = ra, δ = rδ, (a, δ) ∈ S1, r ∈ R, b = b ∈ R

line lb → surface of cylinder r = 0

line la is still degenerate



Line la is desingularized by second blow-up

b = ρb, δ = ρ2δ, (b, δ) ∈ S1, ρ ∈ R, a = a ∈ R

vector field Xε is desingularized with respect to δ

for ε = 0 ∃ smooth critical manifold S



GSPT is applicable with respect to ε uniformly with
respect to δ

Theorem: ε� δ � 1 =⇒ ∃ periodic solution

I. Kosiuk + Sz., SIAM J. Appl. Dyn. Systems (2011)



7. Mitotic Oscillator



Singular behaviour in a model of the cell cycle

existence of a complicated limit cycle

singular behaviour as ε→ 0

very different from standard form

desingularization by GSPT + blow-up



The mitotic oscillator is a simple model related to
the dynamics of the cell-cycle

Paul Nurse, Lee Hartwell,
Tim Hunt

Nobel-Prize in medicine (2001)

cell-cycle: periodic sequence
of cell divisions

crucial players:
Cyclin, Cyclin-dependent
kinase (Cdk)
driven by an oscillator?



The mitotic oscillator has the following components

Cyklin C
active Cdk M
inactive Cdk M+

active C-protease X
inactive C-protease X+

C activates M+ −→M
M activates X+ −→ X
X degrades C

A. Goldbeter, PNAS (1991); more realistic larger models
contain subsystems similar to the Goldbeter model.



Dynamics is governed by Michaelis-Menten kinetics

cyklin C ≥ 0

aktive
Cdk M ≥ 0

active Cyklin-
protease X ≥ 0

Ċ = vi − vdX
C

Kd + C
− kdC

Ṁ = V1
C

Kc + C

1−M
K1 + 1−M

− V2
M

K2 +M

Ẋ = V3M
1−X

K3 + 1−X
− V4

X

K4 +X

Michaelis constants Kj

small Michaelis constants

ε� 1

X

ε+X
=


≈ 1, X = O(1)
x

1+x , X = εx

≈ 0, X = o(ε)



The mitotic oscillator has a periodic solution

Ċ =
1

4
(1−X − C)

Ṁ =
6C

1 + 2C

1−M
ε+ 1−M

− 3

2

M

ε+M

Ẋ = M
1−X

ε+ 1−X
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Ċ =
1

4
(1−X − C)
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The periodic orbit lies in the cube [0, 1]3 ⊂ R3

partly very close to
M = 0, X = 0, M = 1,
X = 0

Theorem: ε� 1⇒
exists periodic orbit Γε
Kosiuk + Sz. (2011)

singular
perturbation?
at least not in
standard form!



Proof uses GSPT and blow-up

Sliding on sides corresponds to slow motion on
critical manifolds M = 0 and X = 0

M = 0 X = 0



Proof uses GSPT and blow-up

Sliding on edge corresponds to slow motion on
one-dimensional critical manifold in blown-up edge.



8. Conclusion, outlook and program

overview and two case studies

identify fastest time-scale and corresponding
scale of dependent variables, rescale

often the limiting problem has a (partially)
non-hyperbolic critical manifold

use (repeated) blow-ups to desingularize

identify relevant singular dynamics

carry out perturbation analysis

approach useful in other multi-parameter
singular perturbation problems
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