Geometric Singular Perturbation Theory (GSPT)

Peter Szmolyan

Vienna University of Technology

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Overview

- 1. Scaling, perturbation methods, and singular limits
- 2. Examples
- 3. Fast-slow systems
- 4. Geometric singular perturbtation theory

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- 5. A glimpse of applications
- 6. Glycolytic oscillator
- 7. Mitotic oscillator
- 8. Extensions, outlook, plan?

1. Scaling, perturbation methods, and singular limits

・ロト・個ト・モト・モー しゅう

Scaling and perturbation arguments are crucial in applied mathematics

context: ODE or PDE models

- processes on very different scales are approximately decoupled
- neglecting couplings gives simpler models
- simple theories are limits of more general theories
- simple models must be coupled to approximate full problem

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Rescaling makes hidden details visible "macro" - state: U(X,T)T δ X Έ 1 $\epsilon x = X$ $\delta t = T$ X scalings for u? $u = \varepsilon^{\alpha} \delta^{\beta} U$ matching

(日)

This can lead to regular perturbation problems

- full problem: $F(u, \varepsilon) = 0$, solution u_{ε} , $\varepsilon \ll 1$
- limit problem: F(u,0) = 0, solution u_0
- regular perturbation:

•
$$u_arepsilon o u_0$$
 smoothly

$$u_{arepsilon}=u_0+arepsilon u_1+arepsilon^2 u_2+\cdots$$

- convergent expansion
- implicit function theorem

Typically this leads to singular perturbation problems

- full problem: $F(u, \varepsilon) = 0$, solution u_{ε} , $\varepsilon \ll 1$
- limit problem: F(u, 0) = 0, solution u_0
- singular perturbation:
 - u_0 may develop singularities
 - no smooth approximation by a single limit problem
 - several scalings with different limit problems are needed
 - approximation by matched asymptotic expansions

2. Examples

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Example 1: singularly perturbed second order ODE

singularly perturbed second order ODE

 $\varepsilon \ddot{u} + p(t)\dot{u} + q(t)u = f(t)$

initial - or boundary value problem limit problem

$$p(t)\dot{u} + q(t)u = f(t)$$

first order ODE; simpler, but cannot satisfy all initial or boundary conditions

 \Rightarrow boundary layers, internal layers

Rescaling gives another limit problem

 $t \in [0,T]$, $p(0) = \lambda > 0 \Rightarrow$ boundary layer near t = 0, fast scale $\tau := \frac{t}{\epsilon}$

$$u'' + p(\varepsilon\tau)u' + \varepsilon q(\varepsilon\tau)u = \varepsilon f(\varepsilon t)$$

limit problem, first order ODE, simpler!

$$u'' + p(0)u' = 0, \quad u(\tau) \sim e^{-\lambda \tau} = e^{-\frac{\lambda t}{\varepsilon}}$$

∃ exponential decaying components, matched asymptotic expansion

$$u(t,\varepsilon) = u_0(t) + u_0(\tau) + O(\varepsilon)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A boundary layer occurs...

http://www.scholarpedia.org/article/Singular_perturbation_theory

Example 2: fast-slow systems

singularly perturbed systems of ODEs in standard form

$$\begin{array}{rcl} \varepsilon \dot{x} &=& f(x,y,\varepsilon) \\ \dot{y} &=& g(x,y,\varepsilon) \end{array} \qquad 0 \leq \varepsilon \ll 1 \end{array}$$

 $x\in \mathbb{R}^m$ fast , $y\in \mathbb{R}^n$ slow, $t\in \mathbb{R}$ time

mathematics: interesting and accessible dynamics applications: biology, chemistry, electrical engineering, mechanics,...

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example 3: systems of singularly perturbed reaction diffusion equations

$$u_t = \varepsilon^2 \Delta u + f(u, v)$$
$$\delta v_t = \Delta v + g(u, v)$$

- $arepsilon \in (0,\infty)$ different speeds of diffusion
- $\delta \in (0,\infty)$ different reaction speeds
- pattern formation: travelling waves, spikes, spiral waves,...
- existence, stability, bifurcations,...
- stationary case in 1-d \Rightarrow back to fast-slow systems

Example 4: vanishing viscosity for hyperbolic conservation laws

 $u \in \mathbb{R}^n$, $x \in \mathbb{R}$, t > 0, (also $x \in \mathbb{R}^d$)

$$u_t + f(u)_x = \varepsilon (B(u)u_x)_x$$

flux $f : \mathbb{R}^n \to \mathbb{R}^n$ smooth; diffusion matrix B(u)smooth, positiv (semi)definit, $\varepsilon \ll 1$ limit problem: hyperbolic conservation law

 $u_t + f(u)_x = 0$

solutions develop singularities (shocks) in finite time many deep results but also many open questions!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example 5: Navier Stokes equations for large Reynolds number

velocity $u \in \mathbb{R}^3$, pressure $p \in \mathbb{R}$, $x \in \mathbb{R}^d$, $d = 2, 3, t \in \mathbb{R}$, Reynolds number $Re = UL/\nu$, $\varepsilon := 1/Re \ll 1$

$$u_t + (u \cdot \nabla)u + \nabla p = \varepsilon \Delta u$$
$$\nabla \cdot u = 0$$

limit problem: Euler equations

$$u_t + (u \cdot \nabla)u + \nabla p = 0$$
$$\nabla \cdot u = 0$$

many deep results but also many open questions!

L. Prandtl created singular perturbation theory to explain boundary layers of fluids near walls (1904)

 $x \in \Omega \subset \mathbb{R}^d$, boundary conditions at $\partial \Omega$ Navier Stokes: $u \mid_{\partial \Omega} = 0$, no slip at $\partial \Omega$ Euler equations: $u \cdot n \mid_{\partial \Omega} = 0$, no flow through $\partial \Omega$

Reality is much more multiscale!

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Reality is much more multiscale!

Example 6: (semi)classical limit of Schrödinger equation

wave function $\psi(t, x)$, potential V(x)

 $i\varepsilon\psi_t = -\varepsilon^2\Delta\psi + V(x)\psi$

limit $\varepsilon \to 0$ corresponds to

Quantum mechanics \rightarrow classical mechanics many deep results but also many open questions!

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Schrödinger equation was (is!) very influential for development of singular perturbation theoy

eigenvalue problem in 1-d, eigenvalue: energy E

 $\varepsilon^2 \psi_{xx} = (V(x) - E)\psi, \qquad \psi(\pm \infty) = 0$

- layer behaviour for V(x) > E, classically forbidden region
- fast oscillations for V(x) < E, classically allowed region

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- turning points at V(x) = E !
- classical approach: WKB method

EVP for 1-d Schrödinger equation is a fast-slow problem

$$\varepsilon^2 \psi_{xx} = (V(x) - E)\psi, \qquad \psi(\pm \infty) = 0$$

define

$$u := \frac{\varepsilon \psi_x}{\psi}$$

 \boldsymbol{u} satisfies fast-slow Riccati equation

$$\begin{aligned} \varepsilon \dot{u} &= V(x) - E - u^2 \\ \dot{x} &= 1 \end{aligned}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Singular limits are important and interesting - also from the dynamical systems and geometric point of view

- shift from finding approximate solutions to qualitative understanding of patterns and dynamics
- difficult for numerics: stiffness, resolving small scales expensive
- accessible to formal and rigorous analysis
- analysis: difficulties but also advantages
- getting the geometry right helps
- lots of things to discover even in fairly simple problems

3. Fast-slow systems

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Important biological processes are periodic on very different time scales

Rhythm	Period
Neural rhythms	0.01 - 1 s
Cardiac rhythm	1 s
Calzium-oszillations	1 s – min
Biochemical oscillations	1 min – 20 min
Mitotic cycle	10 min – 24 h
Hormonal rhythms	10 min – 24 h
Circadian rhythm	24 h
Ovarian cycle	28 days
Annual rhythms	1 year
Ecological oscillations	years
	·

A. Goldbeter (1996) \sim

Most of these processes show fast-slow dynamics

・ ロ ト ・ 西 ト ・ 日 ト ・ 日 ト

-

 γ - and β - oscillations in human brain 38 Hz and 42Hz, units: 100 ms, 1mV mixed mode oscillations and delay effects mechanisms? classification? noise? Modelling of processes on very different time scales leads to fast-slow dynamical systems

- slow processes coupled to fast processes
- singularly perturbed systems of ODEs

$$\begin{array}{rcl} \varepsilon \dot{x} &=& f(x,y,\varepsilon) \\ \dot{y} &=& g(x,y,\varepsilon) \end{array} \qquad 0 \leq \varepsilon \ll 1 \end{array}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- $x\in \mathbb{R}^n$ fast , $y\in \mathbb{R}^m$ slow, $t\in \mathbb{R}$ time standard form, global splitting
- particularly relevant in biology

Singularly perturbed (fast-slow) ODEs in standard form require (at least) two scalings

$$\begin{array}{rcl}
\varepsilon \dot{x} &=& f(x,y,\varepsilon) \\
\dot{y} &=& g(x,y,\varepsilon)
\end{array} \tag{1}$$

x fast, y slow, $\varepsilon \ll 1$, slow time scale t,

transform to fast time scale $\tau:=t/\varepsilon$

$$\begin{array}{ll} x' &=& f(x,y,\varepsilon) \\ y' &=& \varepsilon g(x,y,\varepsilon) \end{array}$$
 (2)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Syst. (1) and Syst. (2) equivalent for $\varepsilon > 0$

There are two distinct limiting systems for $\varepsilon = 0$

- reduced problem $\begin{array}{ccc} 0 &=& f(x,y,0)\\ \dot{y} &=& q(x,y,0) \end{array}$
- layer problem $\begin{array}{rcl} x' &=& f(x,y,0) \\ y' &=& 0 \end{array}$
- critical manifold $S := \{f(x, y, 0) = 0\}$
 - \bullet reduced problem dynamical system on S
 - x slaved to y through constraint f(x, y, 0) = 0

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- \bullet S "manifold" of equilibria for layer problem
- y acts as parameter in layer problem

Two possible interpretations for $\varepsilon \ll 1$

main interest in slow process:

- x fast process, which should be eliminated to obtain simpler model for y
- effects of fast processes?

main interest in fast process:

- y slowly varying parameter
- effect of slow changes in y on dynamics of x

• simplest case: x' = f(x,y), $y' = \varepsilon$, $y \in \mathbb{R}$

In "good" situations (pieces of) critical manifold S persists as a slow manifold S_{ε}

- $S_{arepsilon}$ is invariant manifold
- $S_{arepsilon}$ is O(arepsilon) close to S
- $S_{arepsilon}$ depends smoothly on O(arepsilon)
- $S_{arepsilon}$ inherits stablity properties from S

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• flow on $S_{arepsilon}$ close to flow on S

The classical example: Van der Pol oscillator

$$\begin{array}{rcl} \varepsilon \dot{x} &=& y - \frac{x^3}{3} + x \\ \dot{y} &=& a - x \end{array} \hspace{1.5cm} \text{parameter } a \end{array}$$

reduced problem $S: y = \frac{x^3}{3} - x$, $x \in \mathbb{R}$

$$\begin{array}{rcl} 0 & = & y - \frac{x^3}{3} + x \\ \dot{y} & = & a - x \end{array}$$

layer problem

$$\begin{array}{rcl} x' &=& y - \frac{x^3}{3} + x \\ y' &=& 0 \end{array}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Van der Pol oscillator has folded critical manifold Slayer problem: $x' = y - \frac{x^3}{3} + x$

- S attracting for x < -1 and x > 1
- S repelling for -1 < x < 1
- fold points at x = -1 and x = 1

reduced problem

$$y = \frac{x^3}{3} - x \quad \Rightarrow \quad \dot{y} = (x^2 - 1)\dot{x} = a - x$$

• equilibrium at x = a

• $\dot{y} > 0$, x < a, $\dot{y} < 0$, x > a

• singular at $x = \pm 1$, except for $a = \pm 1!$

Much of this persists for $0 < \varepsilon \ll 1$

- \bullet relaxation oscillations for -1 < a < 1
- excitability for a < -1 and a > 1
- canards and canard cycles for special values of a close to $a=\pm 1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

In higher dimensions fast-slow systems can be more complicated

- a "terrible" problem: Olsen model
- a "good" problem: 3-d and 2-d Autocataltor

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Olsen model describes oxidization of Nicotinamide Adenine Dinucleotide (NADH)

$$\dot{A} = k_7 - k_9 A - k_3 ABY$$

$$\dot{B} = k_8 - k_1 BX - k_3 ABY$$

$$\dot{X} = k_1 BX - 2k_2 X^2 + 3k_3 ABY - k_4 X + k_6$$

$$\dot{Y} = 2k_2 X^2 - k_3 ABY - k_5 Y$$

A oxygen, B NADH, X, Y intermediate products Reaction rates: $k_1 = 0.16$, 0.35, 0.41

 $k_2 = 250, k_3 = 0.035, k_4 = 20, k_5 = 5.35,$ $k_6 = 10^{-5}, k_7 = 0.8, k_8 = 0.825, k_9 = 0.1$

The Olsen model has complicated dynamics

slow-fast dynamics: a) and b) mixed-mode oscillations or chaotic, c) relaxation oscillations

Goal: understand mechanisms of these patterns and bifurcations, very sensitive parameter dependence

Visualization in phase space shows more details

slow dynamics in A, B close to $X, Y \approx 0$, fast dynamics in A, B, X, Y away from $X, Y \approx 0$,

(日)

Scaling A, B, X, and Y gives a slow-fast system

$$\dot{a} = \theta - \alpha a - aby$$

$$\dot{b} = \nu(1 - bx - aby)$$

$$\varepsilon^{2}\dot{x} = bx - x^{2} + 3aby - \beta x + \delta$$

$$\varepsilon^{2}\dot{y} = x^{2} - y - aby$$

 $\nu \approx 10^{-1}, \quad \theta, \alpha, \beta \approx 1, \quad \varepsilon \approx 10^{-2}, \quad \delta \approx 10^{-5}$ ε, ν determine time scales: a, b slow variables x_2, y_2 fast variables; $\nu \ll 1 \Rightarrow b$ is slower than a

 $lpha \sim k_1$, $\delta \sim k_6$, bifurcation parameters

Finding the scaling is not easy

$$A = \frac{k_1 k_5}{k_3 \sqrt{2k_2 k_8}} a, \qquad B = \frac{\sqrt{2k_2 k_8}}{k_1} b$$
$$X = \frac{k_8}{2k_2} x, \qquad Y = \frac{k_8}{k_5} y$$
$$T = \frac{k_1 k_5}{k_3 k_8 \sqrt{2k_2 k_8}} t$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

phase space: $a, b, x, y \ge 0$

Olsen model has a complicated critical manifold

$$\dot{a} = \theta - \alpha a - aby$$

$$\dot{b} = \nu(1 - bx - aby)$$

$$\varepsilon^{2}\dot{x} = bx - x^{2} + 3aby - \beta x + \delta$$

$$\varepsilon^{2}\dot{y} = x^{2} - y - aby$$

complicated critical manifold S

$$bx - x^2 + 3aby - \beta x + \delta = 0$$
$$x^2 - y - aby = 0$$

further complications:

- impact of $\delta \neq 0$ versus $\delta = 0$
- for x, y large different scaling needed

Good scaling is a bit like magic

- large terms dominate small terms
- finding a good scaling is nontrivial!
- what is a good scaling?
- \bullet nonlinear problem \Rightarrow good scaling depends on position in phase space
- often there exist several good scalings

$$x' = -x + \varepsilon x + \varepsilon x^{2}, \quad x \in \mathbb{R}, \quad \varepsilon \ll 1$$
$$x = O(1) \Longrightarrow x' = -x + O(\varepsilon)$$
$$x = O(\varepsilon^{-1}), \quad x = \frac{X}{\varepsilon} \Longrightarrow X' = -X + X^{2} + O(\varepsilon)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

4. Geometric Singular Perturbation Theory

◆□▶◆□▶◆≧▶◆≧▶ ≧ りへぐ

Singularly perturbed (fast-slow) ODEs in standard form require (at least) two scalings

$$egin{array}{rcl} arepsilon\dot{x} &=& f(x,y,arepsilon)\ \dot{y} &=& g(x,y,arepsilon) \end{array}$$

x fast, y slow, $\varepsilon \ll 1$, slow time scale t,

transform to fast time scale $\tau:=t/\varepsilon$

$$\begin{array}{rcl} x' &=& f(x,y,\varepsilon) \\ y' &=& \varepsilon g(x,y,\varepsilon) \end{array}$$

systems equivalent for $\varepsilon>0$

There are two distinct limiting systems for $\varepsilon = 0$

reduced problem

$$0 = f(x, y, 0)$$

 $\dot{y} = g(x, y, 0)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• layer problem $\begin{array}{rcl} x' &=& f(x,y,0) \\ y' &=& 0 \end{array}$

critical manifold $S := \{f(x, y, 0) = 0\}$

reduced problem is a dynamical system on S.

S is a "manifold" of equilibria for layer problem.

Large pieces of critical manifold S can be described as a graph

Solve f(x, y, 0) = 0 by implicit function theorem for

x = h(y)

when
$$\frac{\partial f}{\partial x}(x,y,0)$$
 regular

Reduced problem is essentially

 $\dot{y} = g(h(y), y, 0)$

- ロ ト - 4 回 ト - 4 □ - 4

lifted to S via x = h(y)

Spectrum of linearization of layer problem determines stability of ${\cal S}$

 $(x_0, y_0) \in S$, x_0 equilibrium of $x' = f(x, y_0, 0)$ linearization $A_0 := \frac{\partial f}{\partial x}(x_0, y_0, 0)$, spectrum σ splits according to

 $Re\lambda^s < 0, \quad Re\lambda^c = 0, \quad Re\lambda^u > 0$

in

$$\sigma = \sigma^s \cup \sigma^c \cup \sigma^u$$

with stable, center, and unstable eigenspaces $E^{s}, \ E^{c}, \ {\rm and} \ E^{u}$

$$\mathbb{R}^m = E^s \oplus E^c \oplus E^u$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 x_0 hyperbolic iff $E^c = 0$

Invariant manifold theory provides nonlinear analogs to stable-, center-, unstable spaces

- stable and unstable manifolds $W^s(x_0)$ and $W^u(x_0)$ at hyperbolic equilibria x_0
- center-stable, center- and center-unstable manifolds at non-hyperbolic equilibria x_0
- stable- and unstable manifolds are unique and robust under perturbation
- center manifolds more not unique; more delicate

local bifurcations take place within center manifolds

Individual points of a critical manifolds are not hyperbolic

Assume that $S_0 \subset S$ is given as a graph x = h(y)Linearization of layer problem at point $(h(y), y) \in S$

 $\begin{array}{rcl} x' &=& f(x, y, 0) \\ y' &=& 0 \end{array} \quad \text{is} \quad A := \left(\begin{array}{cc} f_x & f_y \\ 0 & 0 \end{array}\right)$

 $\exists \text{ trivial eigenvalue } \lambda = 0, \text{ multiplicity (at least) } n; \\ \text{eigenspace is tangent space of } S \\ \textbf{Proof:} \quad f(h(y), y) = 0 \text{ differentiate} \\ \end{cases}$

$$f_x h_y + f_y = 0 \quad \Rightarrow \begin{pmatrix} h_y \\ I_{n \times n} \end{pmatrix} \subset ker(A)$$

Pieces of critical manifolds can be normally hyperbolic

Assume that $S_0 \subset S$ is given as a graph x = h(y)

Definition: S_0 is normally hyperbolic iff:

1) linearization A no eigenvalues $Re\lambda = 0$, except trivial eigenvalue $\lambda = 0$ with multiplicity n 2) S_0 is compact

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

1) holds iff $f_x \mid_{S_0}$ has no eigenvalues $Re\lambda = 0$

2) is a uniformity condition

GSPT based on invariant manifold theory allows to go from $\varepsilon = 0$ to $0 < \varepsilon \ll 1$

Theorem: $S_0 \subset S$ normally hyperbolic $\Rightarrow S_0$ perturbs **smoothly** to slow manifold S_{ε} for ε small N. Fenichel (1979)

The dynamics on the slow manifold is a smooth perturbation of the reduced problem

critical manifold S_0 : graph $x = h_0(y)$ reduced problem: $\dot{y} = q(h_0(y), y, 0)$

slow manifold S_{ε} : graph $x = h(y, \varepsilon)$, smooth expansion:

 $h(y,\varepsilon) = h_0(y) + \varepsilon h_1(y) + \varepsilon^2 h_2(y) + \cdots$

slow dynamics on S_{ε}

$$\dot{y} = g(h(y,\varepsilon), y, \varepsilon) = g(h_0(y), y, 0) + O(\varepsilon)$$

Slow manifold has stable and unstable manifolds

 $W^s(S_{\varepsilon})$ and $W^u(S_{\varepsilon})$, smooth dependence on ε

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

In many applications critical manifolds are more complicated

- S has several normally hyperbolic branches separated by non-hyberbolic submanifolds, e.g. folds
- ${\scriptstyle \bullet}~S$ has bifurcation points or singularities
- layer problem allows jumps (fast transitions) between these branches
- parameters μ ∈ ℝ^p can be included as "trivial" slow variables (with nontrivial effects!)

$$\begin{array}{rcl} \varepsilon \dot{x} &=& f(x,y,\mu,\varepsilon) \\ \dot{y} &=& g(x,y,\mu,\varepsilon) \\ \dot{\mu} &=& 0 \end{array}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

5. A glimpse of applications and things to come

| ◆ □ ▶ ★ □ ▶ ★ □ ▶ | □ ● ○ ○ ○ ○

Fenichel's normally hyperbolic GSPT explains many phenomena and has many applications

- nerve pulses Jones (1986, 1990)
- pulses and other patterns in reaction diffusion equations A. Doelman, B. Gardner, T. Kaper, B. Sandstede, S. Schecter, A. Scheel,...(1990,...)
- detonation waves Gasser + Sz. (1993)
- viscous shock waves Freistühler + Sz. (2002, 2010)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

issues: existence, stability and bifurcations

Fenichel theory can be used for three types of problems

- reduction to a single normally hyperbolic slow manifold (often attracting); stucturally stable properties of reduced flow persist.
- connections between invariant objects contained in two different normally hyberbolic slow manifolds, i.e. heteroclinic orbits; needs transversality arguments
- connections involving additional passages close to slow manifolds of saddle type; needs transversality and "Exchange Lemma"

C. Jones, N. Kopell, T. Kaper,...

Singular heteroclinic orbits perturb to heteroclinic orbits for $0 < \varepsilon \ll 1$

 $\varepsilon = 0$

 $\varepsilon > 0$

Sz. (1991)

Pulse propagation in Fitzhugh-Nagumo equation

$$u_t = u_{xx} + f(u) - w$$

 $v_t = \varepsilon(u - \gamma w)$

- w = f(u) S-shaped f(u) = u(u-a)(1-u)
- Reststate (u, v) = (0, 0)
- travelling wave $(u, w)(x, t) = (u, w)(\underline{x + ct})$,

 $:=\tau$

 ${\scriptstyle \bullet}$ speed c

•
$$\lim_{\tau \to \pm \infty} (u, w)(\tau) = (0, 0)$$

• existence, stability

Pulse is homoclinic orbit of fast-slow system

$$u' = v$$

$$v' = cv - f(u) + w$$

$$w' = \varepsilon(u - \gamma w)/c$$

- equilibrium (0,0,0), hyperbolic
- ullet one-dimensional unstable manifold W^u
- two-dimensional stable manifold W^s
- pulse: homoclinc orbit $\omega \subset W^u \cap W^s$
- homoclinic $\exists \Leftrightarrow c = c(\varepsilon)$
- u, v fast, w slow, add c' = 0 as slow

Reduced problem and layer problem

$$0 = v$$

$$0 = cv - f(u) + w$$

$$\dot{w} = (u - \gamma w)/c$$

one dimensional S $w = f(u), v = 0$
 $u' = v$
 $v' = cv - f(u) + w$
 $w' = 0$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Singular homoclinic orbit of travelling wave problem for Fitzhugh-Nagumo equation

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Particularly successful in "low" dimensions

- ${\scriptstyle \bullet}\ m=1,\,n=1$ one slow and one fast variable
- m = 2, n = 1, two fast variables and one slow variable
- m = 1, n = 2, one fast variable and two slow variables
- m = 2, n = 2, two fast variables and two slow variables
- m large n = 1, 2, 3 global reduction to single critical manifold

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Singularities of S cause loss of normal hyperbolicity

singularities of S: folds, bifurcation points, poles,... $\Rightarrow \frac{\partial f}{\partial x}$ singular! loss of normal hyperbolicity Fenichel theory does not apply!

Blow-up method:

- ${\scriptstyle \bullet }$ "clever" rescalings near singularities of S
- singularities are "blown-up" to spheres, cylinders, etc.

Dumortier + Roussarie (1996), Krupa + Sz. (2001)

The 3-d autocatalator has complicated fast-slow dynamics

$$\dot{a} = \mu + c - a - ab^{2}$$

$$\varepsilon \dot{b} = a - b + ab^{2}$$

$$\dot{c} = b - c$$

2-dim folded critical manifold ${\cal S}$

 $\begin{aligned} a-b+ab^2 &= 0\\ S &= S_a \cup p_f \cup S_r\\ S_a \text{ attracting}\\ S_r \text{ repelling} \end{aligned}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Mixed mode oscillations are complicated periodic solutions containing large and small oscillations

$$\dot{a} = \mu + c - a - ab^2$$

$$\dot{\varepsilon} \dot{b} = a - b + ab^2$$

$$\dot{c} = b - c$$

900

Intersection of attracting and repelling slow manifolds generates canards und mixed mode oscillations

$$\begin{split} \dot{a} &= \mu + c - a - ab^2 \\ \varepsilon \dot{b} &= a - b + ab^2 \\ \dot{c} &= b - c \end{split}$$

 1^2 periodische Lösung

・ロト ・ 同ト ・ ヨト ・

Details of generic planar fold point are fairly complicated

- normal hyperbolicity breaks down at fold point
- reduced flow singular at fold pint
- important for relaxation oscillations
- classical problem, many approaches and results
- blow-up method

Dumortier + Roussarie (1996), Krupa + Sz. (2001)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Fold point: (0,0) nonhyperbolic, blow-up method

Krupa, Sz. (2001)
$$\begin{aligned} x' &= -y + x^2 + \cdots \\ y' &= -\varepsilon + \cdots \end{aligned}$$

- asymptotics of $S_{a,\varepsilon} \cap \Sigma^{out}$
- map: $\pi: \Sigma^{in} \to \Sigma^{out}$ contraction, rate $e^{-C/\varepsilon}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

One has to consider the extended system

$$\begin{array}{rcl} x' &=& f(x,y,\varepsilon) \\ y' &=& \varepsilon g(x,y,\varepsilon) \\ \varepsilon' &=& 0 \end{array}$$

defining conditions of generic fold at origin $(x,y,\varepsilon)=(0,0,0)$

- f = 0, $f_x = 0$, origin non-hyperbolic
- $g(0,0,0) \neq 0,$ reduced flow nondegenarate

•
$$f_{xx} \neq 0$$
, $f_y \neq 0$

• \Rightarrow saddle node bifurcation in f = 0

It is straightforward to transform to normal form

$$\begin{aligned} x' &= -y + x^2 + O(\varepsilon, xy, y^2, x^3) \\ y' &= \varepsilon(-1 + O(x, y, \varepsilon)) \\ \varepsilon' &= 0 \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- ${\scriptstyle \bullet}~(0,0,0)$ is a very degenerate equilibrium
- eigenvalue $\lambda =$, multiplicity three
- blow-up the singularity

Blow-up corresponds to using (weighted) spherical coordinates for (x, y, ε)

singularity at origin is blown up to sphere r = 0

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

Blow-up makes hidden details visible and accessible to analysis

blow-up is

- clever rescaling
- zooming into singularity
- and compactification (of things that are pushed to "infinity" by zooming in)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Blow-up of layer problem shows some details

More details live on the sphere

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

The full dynamics of the blown up fold point

うしん 前 ふぼとうぼう (四)

Many details have to be filled in

- computations in suitable charts
- charts correspond to asymptotic regimes
- gain hyperbolicity
- gain transversality
- invariant manifold theory, center manifolds, Fenichel theory

- local and global bifurcations
- special functions: here Airy equation
- regular perturbation arguments

Many applications need GSPT beyond the standard

- no global separation into slow and fast variables
- loss of normal hyperbolicity
- dynamics on more than two distinct time-scales
- several scaling regimes with different limiting problems are needed
- singular or non-uniform dependence on several parameters
- lack of smoothness

Motivation: applications from biology, chemistry, and mechanics

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

6. Glycolytic oscillator

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

Singular dependence on two parameters in a model of glycolytic oscillations

- existence of a complicated limit cycle
- \bullet desingularization by GSPT + blow up method

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• many time scales

Glycolysis is a complicated enzyme reaction: sugar \rightarrow water + CO_2 + energy

subprocess: glucose $\alpha \rightarrow$ pyruvat β + energy $\dot{\alpha} = \mu - \phi(\alpha, \beta)$ $\dot{\beta} = \lambda \phi(\alpha, \beta) - \beta$ $\phi(\alpha, \beta) = \frac{\alpha^2 \beta^2}{L + \alpha^2 \beta^2}$ $L, \lambda \gg 1, \quad 0 < \mu < 1$

L. Segel, A. Goldbeter, Scaling in biochemical kinetics: dissection of a relaxation oscillator, J. Math. Bio. (1994)

 $\sqrt{\lambda/L} \ll 1/\sqrt{\lambda} \ll 1 \stackrel{\text{formally}}{\Longrightarrow} \text{ periodic solution}$

Numerical simulation for $L = 5 \times 10^6$, $\lambda = 40$, $\mu = 0.15$ shows limit cycle

• L large, λ fixed: classical relaxation oscillations • L, λ both large: more complicated For $\lambda, L \to \infty$ the variables α, β are large \Rightarrow rescaling

$$\varepsilon := \sqrt{\lambda/L}, \quad \delta := 1/\sqrt{\lambda}, \quad a := \varepsilon \alpha, \quad b = \delta^2 \beta$$
$$a' = \varepsilon \left(\mu - \frac{a^2 b^2}{\delta^2 + a^2 b^2}\right)$$

$$b' = \frac{a}{\delta^2 + a^2 b^2} - b + \delta^2$$

- a slow, b fast with respect to ε
- Goldbeter-Segel condition: $\varepsilon \ll \delta \ll 1$
- $\varepsilon
 ightarrow 0$ "standard", $\delta
 ightarrow 0$ "singular" ?

Critical manifold has two folds for $\delta > 0$, $\varepsilon = 0$

$$S^{\delta} = \{(a,b): \quad a^2b^2(1-b) + \delta^2(a^2b^2 - b + \delta^2) = 0\}$$

 \implies relaxation oscillations \exists for $\delta > 0$ and $\varepsilon \ll 1$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Critical manifold S^{δ} is singular for $\delta \to 0$

$$S^{\delta}: \quad a^{2}b^{2}(1-b) + \delta^{2}(a^{2}b^{2} - b + \delta^{2}) = 0$$

(日) (四) (日) (日) (日)

Consider the extended system in (a, b, δ) space

 $(\varepsilon, \delta) = (0, 0)$ degenerate lines l_a and l_b of **non-hyperbolic** equilbria

Line *l_b* is desingularized by first blow-up

 $a = r\overline{a}, \ \delta = r\overline{\delta}, \quad (\overline{a}, \overline{\delta}) \in \mathbb{S}^1, \ r \in \mathbb{R}, \quad b = \overline{b} \in \mathbb{R}$ line $l_b \to$ surface of cylinder r = 0line \overline{l}_a is still degenerate

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Line \bar{l}_a is desingularized by second blow-up

 $\overline{b} = \rho \overline{\overline{b}}, \ \overline{\delta} = \rho^2 \overline{\overline{\delta}}, \quad (\overline{\overline{b}}, \overline{\overline{\delta}}) \in \mathbb{S}^1, \rho \in \mathbb{R}, \quad \overline{a} = \overline{\overline{a}} \in \mathbb{R}$ vector field $\overline{\overline{X}}_{\varepsilon}$ is desingularized with respect to δ for $\varepsilon = 0 \exists$ smooth critical manifold $\overline{\overline{S}}$

GSPT is applicable with respect to ε uniformly with respect to δ

Theorem: $\varepsilon \ll \delta \ll 1 \Longrightarrow \exists$ periodic solution

I. Kosiuk + Sz., SIAM J. Appl. Dyn. Systems (2011)

7. Mitotic Oscillator

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Singular behaviour in a model of the cell cycle

- existence of a complicated limit cycle
- singular behaviour as arepsilon
 ightarrow 0
- very different from standard form
- \bullet desingularization by GSPT + blow-up

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The mitotic oscillator is a simple model related to the dynamics of the cell-cycle

Paul Nurse, Lee Hartwell, Tim Hunt

Nobel-Prize in medicine (2001)

cell-cycle: periodic sequence of cell divisions

 crucial players:
 Cyclin, Cyclin-dependent kinase (Cdk)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• driven by an oscillator?

The mitotic oscillator has the following components

Cyklin Cactive Cdk Minactive Cdk M_+ active C-protease Xinactive C-protease X_+ C activates $M_+ \longrightarrow M$ M activates $X_+ \longrightarrow X$ X degrades C

A. Goldbeter, PNAS (1991); more realistic larger models contain subsystems similar to the Goldbeter model.

Dynamics is governed by Michaelis-Menten kinetics

cyklin
$$C \ge 0$$
 $\dot{C} = v_i - v_d X \frac{C}{K_d + C} - k_d C$

$$\begin{array}{lll} \mbox{aktive} & \dot{M} & = & V_1 \frac{C}{K_c+C} \frac{1-M}{K_1+1-M} - V_2 \frac{M}{K_2+M} \\ \mbox{Cdk } M \geq 0 & \end{array}$$

active Cyklin-
$$\dot{X} = V_3 M \frac{1-X}{K_3+1-X} - V_4 \frac{X}{K_4+X}$$
 protease $X \ge 0$

Michaelis constants K_j

small Michaelis constants

 $\varepsilon \ll 1$

$$\frac{X}{\varepsilon + X} = \begin{cases} \approx 1, \ X = O(1) \\ \frac{x}{1+x}, \ X = \varepsilon x \\ \approx 0, \ X = o(\varepsilon) \end{cases}$$

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ 三臣 - のへで

The mitotic oscillator has a periodic solution

The mitotic oscillator has a periodic solution

partly very close to M = 0, X = 0, M = 1, X = 0

Theorem: $\varepsilon \ll 1 \Rightarrow$ exists periodic orbit Γ_{ε} Kosiuk + Sz. (2011)

ヘロト 人間 ト 人 ヨト 人 ヨト

3

partly very close to M = 0, X = 0, M = 1, X = 0

Theorem: $\varepsilon \ll 1 \Rightarrow$ exists periodic orbit Γ_{ε} Kosiuk + Sz. (2011)

singular perturbation?

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

partly very close to M = 0, X = 0, M = 1, X = 0

Theorem: $\varepsilon \ll 1 \Rightarrow$ exists periodic orbit Γ_{ε} Kosiuk + Sz. (2011)

singular perturbation? no

partly very close to M = 0, X = 0, M = 1, X = 0

Theorem: $\varepsilon \ll 1 \Rightarrow$ exists periodic orbit Γ_{ε} Kosiuk + Sz. (2011)

singular perturbation? at least not in standard form!

(日) (四) (日) (日) (日)

Proof uses GSPT and blow-up

Sliding on **sides** corresponds to slow motion on critical manifolds M = 0 and X = 0

$$M = 0 \qquad \qquad X = 0$$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Proof uses GSPT and blow-up

Sliding on **edge** corresponds to slow motion on one-dimensional critical manifold in blown-up edge.

8. Conclusion, outlook and program

- overview and two case studies
- identify fastest time-scale and corresponding scale of dependent variables, rescale
- often the limiting problem has a (partially) non-hyperbolic critical manifold
- use (repeated) blow-ups to desingularize
- identify relevant singular dynamics
- carry out perturbation analysis
- approach useful in other multi-parameter singular perturbation problems