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1 Motivating example — SIS network with reconnection

Let us consider an example close to the true motivation of equation-free analysis for a
multi-scale system. Gross et al. [2006] consider the spread of a disease on a network of
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Figure 1: Family of endemic equilibira and their fold for the SIS network with rewiring (N = 4000
individuals) in the (p,w, I)-space. Grey crosses: equilibria as computed by simulation
of network; blue surface: surface of equilibria as interpolated with regression from
the equilibria. Red curve: saddle-node bifurcation, determined as the fold of the blue
equilibrium surface.

N individuals, corresponding to nodes in a network (N = 104 in Gross et al. [2006] ),
which are initially randomly connected (with average node degree k = 10). There exists
two types of individuals, infected I and susceptible S. Initially a random sample of i
individuals is infected (fraction I = i/N), the others are assigned the status of susceptible
fraction S = (1 − i/N). At every time step every infected node recovers (turning into
a susceptible) with probability r (r = 0.002 in Gross et al. [2006]). For every SI link
(between an infected and a susceptible node) the disease gets transmitted along the link
with probability p (a bifurcation parameter varying between 0 and 0.008 in Gross et al.
[2006]). In addition, at every step every SI link is broken up with probabilityw (w varies
between 0 and 0.2 in Gross et al. [2006]). This break-up occurs such that the S node of the
link removes the link to the I node and instead connects to a random other susceptible
node (avoiding self links and double links, and preserving the overall number of links).

One observation is that for w greater some wc and a certain range opf p a stable
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disease free state and a stable equilibrium with an endemic disease (that is a large
fraction I of infected individuals) coexist. Gross et al. [2006] derive a three-dimensional
ODE that serves as an approximation for the behavior of the network. The variables are I
(the fraction of infected indiviuals), `II, the density of links between infected individuals,
and `SS, the density of links between susceptible individuals. The equations are

d
dt
I = p`SI − rI,

d
dt
`II = p`SI

[
`SI
S

+ 1
]
− 2r`II,

d
dt
`SS = (r+w)`SI −

2p`SI`SS
S

,

(1)
where we know that S = 1 − I and `SI = k/2 − `SS − `II. The approximation is valid
when the network has a certain degree of uniformity, that is, triangles of type a–b–c
occur with frequency `ab`bc/b (where a, b, c ∈ {S, I}). This type of approximation is
called a closure approximation. One replaces unknown terms by functions of already
included dependent variables.

Gross et al. [2006] find that, for the ODE (1), the coexistence region is bounded by a
classical fold (saddle-node) of the endemic equilibrium and a transcritical bifurcation
of the disease-free state. The two are separated by an unstable equilibrium with non-
zero fraction of infected, I. The question is, can one, without making the closure
approximation, by direct simulations of the neetwork from appropriately chosen initial
conditions. Figure 1 shows that this is in principle possible. Gross and Kevrekidis
[2008] demonstrate Kevrekidis’ equation-free approach as discussed in this lecture for a
network with similar rules.

2 Fenichel’s Theorem

Fenichel’s Theorem should have shown up in earlier sessions (possibly with different
notation). The re-statement here is a simplified version for the special case of transversally
stable slow manifolds.

Let
u̇ = Fε(u) (2)

be a smooth dynamical system defined for u ∈ RN, which depends smoothly on the
parameter ε. All conditions on the system will be stated for ε = 0.

Condition S1: compact manifold of equilibria at ε = 0 We assume that ε is a
singular perturbation parameter. This means that the flowMε generated by (2),

Mε : (t;u) ∈ R×RN 7→Mε(t;u) ∈ RN,

has a whole smooth n-dimensional submanifold C0 of equilibria for ε = 0: if u ∈ C0 then
M0(t;u) = u for all t (and, thus, F0(u) = 0). This scenario is clearly singular in some
sense as one would generically expect equilibria to be isolated. To avoid discussion of
what happens on the boundaries of C0, we assume that C0 is compact. In the notation of
singular perturbation theory, tmeasures time on the fast time scale.
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Condition S2: uniform transversal stability Moreover, we assume that this man-
ifold C0 is transversely uniformly exponentially stable for ε = 0, corresponding to the
stable case of Fenichel’s geometric singular perturbation theory [Fenichel, 1979]. Let us
denote the Jacobian of Fε in u as ∂Fε(u). Then the value 0 is an eigenvalue of ∂F0(u)

with geometric multiplicity n for u in the manifold of equilibria C0. The nullspace T0(u)

of ∂F(u) is the tangent space to C0 in u (see Fig. 2a). We require that all N− n other
eigenvalues of ∂F0(u) are in the left half plane uniformly for all u ∈ C0. That is, we
assume that there exists a spectral gap γ0 > 0 such that

Re λ < −γ0 for all λ ∈ spec∂F0(u) \ {0} and all u ∈ C0. (3)

u0 ∈ C0

u

C0
T0(u

0
)

M
0 (t; u)g0(u)

Rn

RN−n

g −
10
(u

0 )

g −
10
(u

0 )

Figure 2: Sketch of the assumptions on the geometry for ε = 0.

Consequence 0: stable foliation A consequence of the above two assumptions is
that for ε = 0 there exists an open neighborhood U of C0, which is foliated by stable fibers.
Mote preceisely, the flowM0 converges to the slow manifold C0 with a uniform rate γ0

(the spectral gap) from all initial conditions u ∈ U(C0). That is, for every u ∈ U there
exists a point p ∈ C0 such that

lim
t→∞M0(t;u) = p

(note that for ε = 0 all points on the manifold C0 are equilibria ofM0), and the distance
can be bounded via

‖M0(t;u) − p‖ 6 C exp(−γ0t)‖u− p‖, ‖∂j2M0(t;u)‖ 6 C exp(−γ0t)
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for all t > 0 and j > 1, where the constant C depends only on the derivative order j, but
is uniform for all u ∈ U(C0). The above statement implies the existence of a smooth map
(called the stable fiber projection)

g0 : U→ C0, defined by g0(u) := p, (4)

assigning to each u its limit p ∈ C0 under the flowM0 (see Figure 2).

Consequence 1: persistence of slow manifold The slow manifold C0 persists for
sufficiently small ε, deforming to a smooth nearby manifold Cε (as shown in Figure 3).
Restricted to Cε the flow is governed by a smooth ODE (the slow flow) with a right-hand
side for which all derivatives up to a given order k are proportional to ε (larger k requires
smaller ε):

‖fε(u)‖ 6 Cε,
∥∥∂jfε(u)[v1, . . . , vj]

∥∥ 6 Cε‖v1‖ · . . . · ‖vj‖ (5)

for all j = {1, . . . ,k}, u ∈ Cε and v1, . . . , vj in the tangent space Tε(u) of Cε (for ε = 0 the
space T0(u) is the null space of the linearization ∂F0(u)). The constantsC are independent
of u. Thus, the flowMε(t; ·) is a global diffeomorphism on the slow manifold Cε which
has growth bounds of order ε forward and backward in time:

‖∂j2Mε(t; ·)|Cε‖ 6 C exp(ε|t|), ‖∂j2M−1
ε (t; ·)|Cε‖ 6 C exp(ε|t|), (6)

for some constant C independent of t and ε and all derivative orders j up to a fixed
order k. Note thatM−1

ε (t; ·) =Mε(−t; ·) for all times t as long as one restricts the flow
Mε to the slow manifold Cε.

Consequence 2: persistence of stable fibers We assume that ε is sufficently
small such that the perturbed manifold Cε is still a subset of the neighborhood U of the
original unperturbed manifold C0. Then the stable fiber projection map g0 persists for
small ε, getting perturbed smoothly to a map gε, defined for each u in the neighborhood
U of the manifold C0 (and its perturbation Cε). The map gε picks for every point u ∈ U

the unique point gε(u) inside the slow manifold Cε such that the trajectories starting
from u and gε(u) converge to each other forward in time with an exponential rate γ of
order 1 (that is, γ is uniformly positive for all sufficiently small ε and all u ∈ U):

‖Mε(t;u) −Mε(t;gε(u))‖ 6 C exp(−γt)‖u− gε(u)‖,
‖∂j2Mε(t;u) − ∂

j
2Mε(t;gε(u))‖ 6 C exp(−γt)‖u− gε(u)‖,

(7)

for all t > 0, u ∈ U and 0 6 j 6 k, where the constant C is uniform for u ∈ U. In
general, the decay rate γ has to be slightly smaller than spectral gap γ0 asserted to exist
in Condition S1 for ε = 0. More precisely, for every rate γ < γ0 there exists a range
(0, ε0) of ε for which (7) holds. Choosing ε0 smaller permits one to choose γ closer to γ0.
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Figure 3: Geometry for ε > 0. The singular case ε = 0 from Fig. 2 is gray in the background. A
trajectory of length (time) δ starting from u and its shadow trajectory on Cε are shown.

In (7) the notation ∂j2Mε refers to the jth-order partial derivative of the flow Mε with
respect to its second argument (the starting point). The stable fiber projection map gε is
an order-ε perturbation of g0:

‖gε(u) − g0(u)‖ 6 Cε, ‖∂jgε(u) − ∂jg0(u)‖ 6 Cε (8)

for all j = {1, . . . ,k} and a constant C that is uniform for all u ∈ U. The black curves
transversal to Cε in Figure 3 illustrate the fibers, that is, which points of U get mapped
onto the same point in Cε under gε. Note that the fibers are not trajectories of the flow
Mε for ε > 0.

Note that the stable foliation permits us to extend the definition of Tε(u) trivially to
points u ∈ U that are not elements of the slow manifold Cε:

Tε(u) := Tε(gε(u)). (9)

3 Equation-free analysis

The equation-free approach to coarse graining, originally proposed by Kevrekdis (see
Kevrekidis and Samaey [2010] for a Scholarpedia entry and Kevrekidis and Samaey
[2009] for a recent review) does not require direct access to the right-hand side F of (2)
but merely the ability to evaluate Mε(t;u) for finite positive times t and arbitrary u.
Typically, 1� t� 1/ε in the fast time scale t, used in our notation. It also relies on two
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smooth (possibly linear) maps that have to be chosen beforehand

R : RN 7→ Rn the restriction map,

L : Rn 7→ RN the lifting map.

The basic idea underlying equation-free analysis is that one can explore many aspects of
the dynamics of (2) on the slow manifold Cε by studying a map in the space of restricted
variables x ∈ domL (the domain of L) of the form

Lift7→Time-step7→Restrict,

or, to be precise, the map

Pε(t, ·) : Rn 7→ Rn, given by x 7→ RMε(t;Lx). (10)

In the notation of Kevrekidis and Samaey [2009], the evaluation ofMε(t;u) for an initial
value u ∈ Rn is called a microscopic simulator.

The idea behind this notion is that one can treat many-particle systems with a large
number of degrees of freedom (microscopic systems) as slow-fast systems, where the
random microscopic motion averages out and macroscopic quantities move on the
slow time scale. The relaxation occurs only in a statistical mechanics sense toward an
equilibrium. Section 1 will give a practical example.

Finding equilibria For example, Kevrekidis and Samaey [2009] propose that one can
find equilibria of (2) approximately by solving

Pε(t; x) = x (11)

for x where t > 0 is an appropriately chosen time. Generally, 1 � t � 1/ε is chosen.
This guarantees that, after lifting x to Lx, the flowMε(t;Lx) has converged to the slow
manifold Cε (implied by (7)). Thus, the time t has to be long enough to contain the
initial layer of the trajectoryMε([0, t];Lx) (the exponentially decaying part off the slow
manifold).

The other restriction on t, t� /ε, is imposed by the time scale on the slow manifold.
The derivatives of the flowMε restricted to the slow manifold are of order ε such that
integration times of order less than 1/ε can be considered short (Kevrekidis and Samaey
[2009] call the integration for time t a short burst of simulation).

Stability Correspondingly, the stability and bifurcations of an equilibrium x0 can be
found by studying the Jacobian of Pε,

Jε(t; x0) =
∂

∂x
Pε(t; x)|x=x0 =

∂

∂x
[RMε(t;Lx)] |x=x0 .
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Projective integration One can also perform numerical integration on the slow
manifold with time steps different from the time steps in the simulator. Suppose one
has an initial value x(0) = x0 for the restricted variables in domL. For example, one first
calculates

fapprox(x0) =
1
h
[Pε(h; x0) − x0]

as an approximation of the derivative of the right-hand side of the flow on the slow
manifold Cε, and then one performs an explicit Euler step with step size H 6= h to obtain

x(h) = x0 +Hfapprox(x0).

Projective integration is of interest if one can either choose H� h. Remember that x is
supposed to follow the dynamics on the slow manifold, where the true right-hand side
fε is small (see (5)). Another scenario of potential interest is integration backward in
time (choosing H < 0). Backward integration is practically impossible in the full system
because it is stiff, and, thus, strongly expanding backward in time. However, on the
slow manifold Cε the flow is invertible with more moderate growth (again, (5)).

4 Feasibility conditions for equation-free analysis

The restriction R and the lifting L have to satisfy a few conditions to make equation-free
analysis feasible (not yet attempting to prove convergence in any sense). Again, the
conditions will be formulated for ε = 0. They will then automatically hold for sufficiently
small ε > 0.

Condition M1: transversality for the lifting L First of all L has to map into the
neighborhood U of C0:

L : domL ⊂ Rn 7→ U. (12)

However, this is not enough. The idea behind equation-free analysis is that our restricted
variables x ∈ domL can be used as coordinates on the slow manifold Cε. Hence, we
have to require some kind of transversality. One sensible transversality condition is to
assume that the stable fiber projection g0 provides a (local) diffeomorphism between
rgL and C0. Equivalently, the Jacobian matrix of g0 ◦ L has to have full rank:

rank[∂g0(Lx) ◦ ∂L(x)] = n for all x ∈ domL. (13)

This assumption is reasonable. It assumes that, in the limit of infinite time-scale sepa-
ration (ε = 0), nearby but different points x1 and x2 in the space of restricted variables
domL get mapped onto different (but nearby) points g0(Lx1) and g0(Lx2) in C0. Fig-
ure 4(b) shows how a violation of this rule would look like for n = 1 and N = 3.

A direct consequence is that this transversality condition is also satisfied for small
ε > 0:

rank[∂gε(Lx) ◦ ∂L(x)] = n for all x ∈ domL. (14)
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Figure 4: Sketch illustrating the transversality assumptions on R and M for ε = 0. (a) General
setup, (b): Condition M1, no two points from the range of L should be projected onto
the point of C0 by the fiber.

Condition M2: Transversality for the restriction R The restriction R has to be
defined on the neighborhood U of C0 (which also contains all slow manifolds Cε for all ε
under consideration): R : U 7→ Rn.

In addition we have to require that the restriction R does not collapse nearby points
on C0 onto the same image. More precisely, R has to be a local diffeomorphism from
C0 to rgR ⊂ Rn. Equivalently, this means that the dimension of the space ∂R(u)T0(u)

equals n for all u ∈ C0. Remember that T0(u) is the tangent space of C0 in u ∈ C0 (and
the nullspace of ∂F0(u)).

Again, a direct consequence is that this transversality condition is also satisfied for
small ε > 0:

dim[∂R(u)Tε(gε(u))] = n for all u ∈ U sufficiently close to Cε. (15)

5 The flow on Cε in restricted coordinates

The conditions M1 and M2 permit us to express the flow Mε, restricted to the slow
manifold Cε for ε > 0, in the restricted coordinates x ∈ domL. In orer to be able to write
an ODE on the manifold Cε we need a chart for Cε in domL.

The following map X0,ε : domL 7→ Cε is such a chart for (a part of) Cε over domL:

X0,ε(x) = gε(Lx).
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Why is this map is locally invertible? Because g0 ◦ L is a local diffeomorphism between
domL and C0 by assumption M1. Thus, the perturbation gε ◦ L is a diffeomorphism
between domL and Cε for small ε as stated in (14).

How can one compute the local inverse of this map in practice? Let us assume, we are
given a point uref ∈ Cε and its pre-image xref ∈ domL (gε(Lxref) = uref). How can one
find the pre-image x ≈ xref of a point u ≈ uref in Cε? We can solve the regular nonlinear
system

Rgε(Lx) = Ru. (16)

The combination of the assumptions M1 and M2 ensures that the Jacobian of the left-hand
side with respect to x is regular, and for u = uref we have a solution xref.

Since the restriction R defines the inverse of the local diffeomorphism between domL

and Cε implicitly, the flow on Cε follows an implicit ODE for x:

d
dt

[Rgε(Lx)] = RFε(gε(Lx)). (17)

This ODE is an exact representation of the flow Mε in x coordinates in domL. This
representation is not practically useful because gε and Fε are not known. The evaluation
of Fε can be approximated by a time step difference of a numerical integration (say,
Fε(u) ≈ (Mε(h;u) − u)/h for small h). However, the fiber projection gε, which is
needed to project Lx onto Cε, is beyond reach.

An equivalent representation There are various ways to overcome the inaccessib-
lity of the stable fiber projection gε. One way is to ensure that L always maps onto the
slow manifold Cε. The procedure described by Zagaris et al. [2009, 2012] achieves this
approximately to finite order of ε. We take another approach, achieving exponentially
accurate ∼ exp(−C/ε) convergence.

Apparently, for δ = T/ε and T > 0 fixed, the flow u 7→Mε(δ;u) is a global diffeomor-
phism on Cε. In fact,Mε(δ; ·) is a perturbation of the identity of order T due to (5). Hence,
the concatenation of the map X0,ε(x) = gε(Lx) : domL 7→ Cε with the diffeomorphism
Mε(δ; ·) is also local diffeomorphism between domL and Cε:

Xδ,ε(x) :=Mε(δ;gε(Lx)). (18)

The local diffeomorphismsXδ,ε provide a family of charts for Cε over domL, parametrized
with δ. Each of these charts will give a different form for the implicit ODE. However, all
these different ODEs will be identical except for a change of coordinates.

The local inverse of Xδ,ε can be computed implicitly in the same way as the inverse
of X0,ε: let us assume, we are given a point uref ∈ Cε and its pre-image xref ∈ domL

(Mε(δ;gε(Lxref)) = uref). How can one find the pre-image x ≈ xref of a point u ≈ uref in
Cε? We can solve the regular nonlinear system

RMε(δ;gε(Lx)) = Ru. (19)
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All parts of the left-hand side are known to be local diffeomorphisms: gε ◦ L : domL 7→
Cε, Mε(δ; ·) : Cε 7→ Cε, and R : Cε 7→ Rn (using the assumptions M1 and M2). This
ensures that the Jacobian of the left-hand side with respect to x is regular. Moreover, for
u = uref we have a solution xref such that we can apply the inverse function theorem to
solve (19).

In this modified coordinate representation the flow on the slow manifold is governed
by implicit ODE for x:

d
dt

[RMε(δ;gε(Lx))] = RFε(Mε(δ;gε(Lx))). (20)

Again, this ODE is an exact representation of the flow Mε in x coordinates in domL.
Notice that the only difference to the ODE (17) using only the fiber projection is the
insertion of the diffeomorphism Mε(δ; ·) in front of gε (that is, the diffeomorphism
Mε(δ; ·) is applied after gε).

Implicit flow map Φ∗ Instead of writing an implicit ODE we can also define the flow
mapΦ∗ : [0,∞)× domL 7→ domL, which is a representation of the flowMε, restricted
to Cε in the coordinates in domL. For t ∈ [0, Tup/ε] with sufficiently small Tup, Φ∗(t; x)
is given implicitly as the solution y∗ of

RMε(δ+ t;gε(Ly∗)) = RMε(δ+ t;gε(Lx)), (21)

For larger t we split up t intom smaller time steps and define

Φ∗(t; x) := Φ∗(t/m; ·)m[x]. (22)

(However, in the context of equation-free analysis we are typically interested in short
times t.) Obtaining Φ∗(t; ·) for small negative t can be reduced to solving the same
nonlinear system (21), swapping x and y∗.

6 Approximating the flow on Cε with equation-free

analysis

The flow Φ∗ is the exact flow map forMε, restricted to Cε, written in the x coordinates
in domL ⊂ Rn, and using the local diffeomorphism M(δ;gε(L·) : domL 7→ Cε to define
the chart of the manifold Cε.

In the defining equation (21) for Φ∗, the only unknown map is gε. However, when
we replace M(δ;gε(·)) byMε(δ; ·) we make an exponentially small error, and we obtain
a defining equation for an approximate flow map Φ : [0,∞)× domL 7→ domL. The
solution y of the system

RMε(δ;Ly) = RMε(δ+ t;Lx) (23)
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is the image of x: Φ(t; x) := y. The extension to larger times t and negative t is identical
to the definition forΦ∗.

In which sense is the error exponentially small? The exponential contraction along
fibers, stated in (7) ensures that

‖Mε(δ;Lx) −Mε(δ;gε(Lx))‖ 6 C exp(−γδ)‖Lx− gε(Lx)‖ 6 C̃ exp(−γδ),

‖∂j2Mε(δ;Lx) − ∂
j
2Mε(δ;gε(Lx))‖ 6 C exp(−γδ)‖Lx− gε(Lx)‖ 6 C̃ exp(−γδ),

(24)

where we estimated Lx− gε(Lx) with a constant (the constant C̃ is independent of x and
ε for x in a bounded region). Since δwas of the from T/ε for a fixed T (T is measuring
time on theslow time scale), we obtain that the nonlinear maps on both sides of the
defining system (21) forΦ∗ (the exact flow map) and of the defining system (23) for the
approximate flow mapΦ differ by a term of the form

C exp(−γT/ε)

in all derivatives up to a finite order k, where C is independent of x and ε. This ensures
that the solutionsΦ∗ and Φ also differ by a term of the same form.

The error estimates (24) highlight the purpose of the time shift δ along the slow flow
on the manfold Cε. Choosing it larger than 0 “heals” the error committed by lifting x to
a point away from the slow manifoldCε. The concept of a healing time is also mentioned
in the review [Kevrekidis and Samaey, 2009], but δ is included only one the right-hand
side of (23) there.

We can collect our statements in the following theorem:

Theorem 1 (Convergence of equation-free analysis)

Let T > 0 and Tup > 0 be fixed and sufficiently small, and let D ⊂ domL be a
bounded set. Let the two mapsΦ∗ andΦ be defined implicitly for t ∈ [0, Tup/ε]

by

RMε(T/ε;gε(Ly∗))RMε(T/ε+ t;gε(Lx)), Φ∗(t; x) := y∗,

RMε(T/ε;Ly) = RMε(T/ε+ t;Lx), Φ(t; x) := y.

Then the difference between the two maps is bounded by

‖Φ(t; x) −Φ∗(t; x‖ 6 C exp(−γ/ε),

‖∂j2Φ(t; x) − ∂j2Φ∗(t; x‖ 6 C exp(−γ/ε) for all j ∈ {1, . . .k}.
(25)

The constants C in the estimate depend on T and Tup and the domain D, but not
on x and ε.

Note that the bound Tup for the time t is only sufficently small on the slow time scale.
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7 Modification of the practical formulas for

equation-free analysis

The fact that the flow map Φ∗ is in fact implicitly defined, requires a few modifications
of the formulas presented in Section 3.

Suppose, we are given the maps for restriction R, lifting L and a time-stepper Mε(t; ·).
Then one can perform a number of tasks by solving low-dimensional nonlinear systems.
In the following formulas the healing time δ has to be chosen sufficiently large (what
this means in a given example has to be determined by experimentation).

Finding equilibria boils down to finding fixed points of Φ(t; ·) with some (fairly
arbitrary) t. Typically, one has to choose t small on the slow time scale, that is, t = Tstep/ε

where Tstep is small, buttmay not necessarily be small. Hence, equilibria can be found
by solving the regular n-dimensional system

RMε(δ+ t;Lx) = RMε(δ;Lx) (26)

for x ∈ domL. This equation has been proposed and studied already in [Vandekerckhove
et al., 2011]. Typically, this task is performed with a Newton iteration (or one of its
modifications), and a pseudo-arclength continuation.

Stability of equilibria Correspondingly, the stability and bifurcations of an equilib-
rium x0 can be found by studying the generalized eigenvalue problem[

∂

∂x
[RMε(δ+ t;Lx)]

∣∣∣
x=x0

]
x = λ

[
∂

∂x
[RMε(δ;Lx)]

∣∣∣
x=x0

]
x. (27)

This eigenvalue problem will give the eigenvalues of the implicitly-known flow map
Φ(t; ·) linearized in the equilibrium x0 such that bifurcations occur when λ is on the unit
circle.

Projective integration Since the flow on Cε is available only in implicit form, every
integration scheme becomes implicit. For example, if one wants to perform an explicit
Euler step of stepsize H starting from xj at time tj, this is equivalent to the implicit
scheme (defining xj+1 as the new value at time tj+1 = tj +H):

RMε(δ;Lxj+1) − RMε(δ;Lxj) =
H

h

[
RMε(δ+ h;Lxj) − RMε(δ;L(xj)

]
. (28)

In (28), we have approximated the right-hand side of the ODE of the slow flow by by a
finite-difference approximation:

Fε(u) ≈
1
h
[Mε(h;u) − u]

for u =Mε(δ;Lx).
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Matching the restriction Sometimes it is of interest to find a microscopic state
u ∈ RN on the slow manifold Cε that has a particular x ∈ Rn as its restriction (Ru = x),
see [Gear et al., 2005, Zagaris et al., 2009, 2012]. This state u is defined implicitly, and
can be found by solving the n-dimensional nonlinear equation

RMε(δ;Lx̃) = x (29)

for x̃, and then setting u =Mε(δ;Lx̃). This solution u is close to the true slow manifold
Cε with an error of order exp(−γδ). This implies that, if we choose δ = T/ε with a
fixed small T > 0, the distance of u to Cε is small beyond all orders of ε. Equation (29)
was also proposed and studied in [Vandekerckhove et al., 2011] (called INITMAN by
Vandekerckhove et al. [2011]).

8 Discussion of the convergence statements

Adaptation of restriction R and lifting L Theorem 1 is a local statement with
respect to x, claiming convergence only in a region domL in which the transversality
conditions are uniformly satisfied, and restricting the times δ and t such that the slow
flowMε(·;gε(x)) cannot leave the slightly larger region domR for the times δ and δ+ t.
This is appropriate because in many cases, during continuation or projective integration
the maps R and L get adapted along curves of equilibria or along trajectories.

Testing the transversality conditions and choosing the healing time and
coarse dimension The conditions S1, S2, M1 and M2listed in contain terms that are
unknown in practice. For example, the fiber projection g0 and the tangent space T0(u)

to the slow manifold are both inaccessible because in many cases one can not vary the
time scale separation parameter ε. However, observing the minimal singular value of
the linearization ∂/∂x[RMε(δ;Lx)] with respect to x (an n-dimensional matrix) serves as
an indicator: in points where the transversality condition is violated, the linearization
becomes singular.

Similarly, the condition of the linearization, Kδ = cond∂/∂x[RMε(δ;Lx)], is a guide
how to choose an optimal healing time δ. While the error due to finite time scale becomes
smaller at a faster rate than Kδ grows, other errors may become dominant when they are
amplified by Kδ. Especially, when the microscopic system is a Monte-Carlo simulation, a
trajectoryMε(t;u) is determined via ensemble runs, and the accuracy of the evaluation
ofMε is only of the order of 1/

√
Swhere S is the ensemble size.

The linearization ∂/∂x[RMε(δ;Lx)] also helps to discover if one has too many coarse
variables, that is, if n is too large such that the flowMε restriced to the assumed slow
manifold Cε is not sufficiently slow (still containing rapidly decaying components).
Then ∂/∂x[RMε(δ;Lx)] becomes close to singular, too. Note that any solution found, for
example, by solving the fixed point equation (26) is still a correctly identified fixed point
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with correctly identified stability. However, the linearization of (26) becomes close to
singular.

Stochastic systems Barkley et al. [2006] analysed how the equation-free approach
can be used to analyse moment maps of stochastic systems or high-dimensional chaotic
systems that converge in a statistical mechanics sense to low-dimensional stochastic
differential equations (SDEs). They observe that the healing time strongly influences the
results. Even the inclusion of additional macroscopic variables (increasing n) drastically
changed the results of the equation-free analysis. It is unclear, how the implicit scheme
(23) behaves in the situations studied by [Barkley et al., 2006]. While Barkley et al. [2006]
also invoke a separation-of-time-scales argument to study approximation quality, their
setting does not fit into the assumptions underlying Fenichel’s theorem, but requires
weaker notions of convergence (see [Givon et al., 2004] for a review).

9 Test examples

9.1 A prototype slow-fast system of ODEs

We demonstrate the convergence properties using a simple slow-fast system of two fast
variables and two slow variables. We denote the components of the variable u by (x,y),
where x = (x1, x2) and y = (y1,y2).

kerR

rgL

fast part

slow part

slo
w

manifo
ld
C 0

saddle limit cycle

integration of full system
projective integration
backward in time

x2

x1

y1

Figure 5: Phase portraits and slow manifold of the four-dimensional slow fastsystem (31)–(30).
Parameters: µ = −4, ε = 10−2, δ =

√
ε = 10−1, h = 10−2, H = −0.05, θR = 0.2,

θL = −0.2.
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The fast subsystem is linear in y, and the overall system has the form in the fast time
scale

ẋ(t) = εf (x,y) + h(y− g(x)), (30)

ẏ(t) = −Ay (y− g(x)) , (31)

where A has a complex pair of eigenvalues with positive real part. For the illustration in
Figure 5 we choose

Ay =

[
0 −1
5 2

]
, and g(x1, x2) =

[
asinh 2x1 − asinh x2

asinh x2.

]
such that the eigenvalues of Ay are 1± 2i, and the slow manifold is the graph

C0 = {(x,y) : y = g(x)}.

For the slow dynamics, determined by f, we use the subcritical Hopf normal form but
replace x in several places with x̃ = g−1(y) (note that our g is invertible):

f1(x,y) = µx̃1(y) − x2 + x̃1(y)
[
x2

1 + x
2
2
]

f2(x,y) = x1 + µx2 + x2
[
x̃1(y)

2 + x2
2
]

,
(32)

where x̃1(y1,y2) = sinh(y1 − y2)/2. The additional term h(y− g(x)) in (30) puts the
slow-fast system into general position: the fast dynamics no longer changes only y
but also x, mimicking the case where the decomposition into fast variables and slow
variables is not known precisely. We choose

h(y) =

(
y3

1,y3
2

)(
1 + y4

1 + y
4
2

)3/4

such that the h-term in (30) does not alter the local stability of the slow manifold C0, and
the h-term stays globally bounded.

In the limit ε→ 0 the reduced system for (30)–(31) follows the subcritical Hopf normal
form on the slow time scale (using prime to indicate slow time scale):

x ′1 = µx1 − x2 + x1
[
x2

1 + x
2
2
]

x ′2 = x1 + µx2 + x2
[
x2

1 + x
2
2
]

,

which has a stable fixed point at the origin, x = 0, and an unstable periodic of radius 2
at our choice of µ, µ = 2, (x1(t), x2(t)) = (x3(t), x4(t)) = (2 cos(t+ϕ), 2 sin(t+ϕ)), as
its only recurrent sets. These sets persist in the coupled singularly perturbed system
(30)–(31) for ε > 0 and live on the invariant manifold Cε. Figure 5 shows this unstable
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periodic orbit as obtained using projected integration on the slow manifold backward in
time with the trapezoidal rule:

RMε(δ;Lxj+1) − RMε(δ;Lxj) =
H

2h

[
RMε(δ+ h;Lxj+1) − RMε(δ;L(xj+1)+ (33)

+ RMε(δ+ h;Lxj) − RMε(δ;L(xj)
]

.

Note that the terms Mε(δ;Lx) can be computed as part of Mε(δ+ h;Lx). We remark
that integration backward in time is practically impossible for the full system (30)–(31)
because the invariant manifold Cε is strongly unstable after reversal of time.

slo
w manifold C0

results of projected
integration

un = Mε(δ; L(xn))

L(xn)

{Mε(t; L(xn)) : t ∈ [0, δ]}

x2

x1
y1

Figure 6: Zoom into phase portrait Figure 5 (look from above onto the slow manifold C0), illus-
trating the large healing correction to L(x), obtained by applying u 7→ Mε(δ,u) (the
illustration shows only every fifth computed point). Parameters: µ = −4, ε = 10−2,
δ =
√
ε = 10−1, h = 10−2, H = −0.05, θR = 0.2, θL = −0.2.

9.2 Investigation of dependence on L and R

For the projected integration scheme (33) we have to specify the lifting L and the restric-
tion R:

Ru = R(x,y) = (1 − θR)x+ θRy,

Lx =

[
(1 − θL)x+ θLxref

(1 − θL)yref + θL[x− xref]

] (34)

Both definitions contain a parameter, θL and θR, which control the angle of both projec-
tions relative to the slow manifold. One natural choice for R and L for example (30)–(31)
would be θR = θL = 0, effectively picking x as the slow variable and y as the fast
variable. The lifting L also depends on a reference value uref = (xref,yref). This reference
value permits to place the lifted value Lx close to the slow manifold, which may be
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important if the slow manifold is not globally stable. A natural choice for projected
integration is uref =Mε(δ;Lxn−1), the image of the previous point along the projected
trajectory under Mε(δ;L(·)). In the example, we make the naive choice uref = 0 such
that

Lx =

[
(1 − θL)x

θLx

]
.

Figure 6 shows that this forces the operator u 7→ Mε(δ;u) to make large corrections
to the lifted value Lxn. We have an accurate approximation for the local error of the

0 1 2 3 4 5 6 7 8

0.001

0.001

0.001

0.001

0.1

time

‖Mǫ(H,un+1) − un‖2

Tol

errTr

errh

errδ

Figure 7: Local error ũn −un of projected backward integration (curve at the top). Shown below
are estimates for the various sources of error: the tolerance Tol of the time stepper
(10−3), the local error errTr of the trapezoidal rule, approximation error errh for right-
hand side, and the error errδ due to incomplete healing. Parameters: µ = −2, ε = 10−2,
δ =
√
ε = 10−1, h = 10−2, H = −0.05, θR = 0.2, θL = −0.2.

projected backward integration (33): we can, after performing one projected integration
step backward in time (with H = −0.05 < 0) from un to un+1, perform a forward
integration step with the time stepper, ũn = M(−H;un+1) (recall that H < 0), and
compare un and ũn for every n. Figure 7 shows the norm of the difference ũn − un
(black line at the top) along with estimates for the sources of error introduced at different
stages of approximation. The four contributions to the overall error are:

• the accuracy of the time stepper. Figure 7 shows the chosen tolerance Tol (10−3)
set as an option to the used integrator ode15s.
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• The local discretization error errTr when applying projected integration with a
numerical method (in the example the trapezoidal rule), that is, the error occuring
in each step when approximating (20) by the discrete iteration (33). The estimate
shown in Figure 7 was obtained by checking the difference between un+1 and
ûn+1, obtained by applying two steps of the trapezoidal rule with stepsize H/2,
starting from un. Assuming that the local error of the trapezoidal rule is of order
H3 we estimate errTr = (8/7)‖un+1 − ûn+1‖2.

• The error errh incurred when approximating the right-hand side [Fε](u) by a
discretization, [Mε(h;u) − u]/h. We estimate this error by assuming that it has
order 1 such that

errh = 2
∥∥∥∥ 1
h
[R(Mε(h;un)) − R(un)] −

2
h
[R(Mε(h/2;un)) − R(un)]

∥∥∥∥
in Figure 7.

• The healing error errδ incurred when approximating the dynamics on the slow
invariant manifold Cε, that is, the error occuring when approximating Φ∗, defined
by (21), with Φ, defined by (23). In general one does not have a direct estimate for
this component. However, in the example, we can evaluate the distance from the
second-order approximation of the slow manifold:

errδ = ‖yn − g(xn) + εA
−1
y g

′(xn)f(xn,g(xn))‖.

Note that this is not the true distance from the approximate manifold Cε, given by

Cε =
{
(x,y) : y = g(x) − εA−1

y g
′(xn)f(xn,g(xn)) +O(ε2)

}
,

but it is an upper bound.

Figure 7 shows that the local error at every step has the magnitude expected from the
contributions of approximations performed during the projected integration. Figure 8
shows a measure for the global error and its dependence on the choice of lifting and
restriction. The original system has a periodic orbit of saddle type which the projected
integration converges to as the number of steps increases. This periodic orbit has
a transverse intersection with the plane P = {u = (x,y) : x2 = u2 = −1.5} near
u1(= x1) = 1.3. Clearly, the sequence un = Mε(δ;Lxn), generated by the projected
integration, depends strongly on L and R, which in our example have the parameter θL
and θR:

∆un ∼ (∆θR,∆θL).

However, the location of the intersection of the interpolated sequence un with P should
be independent of θR and θL. This intersection should approximate the intersection of
the periodic orbit with P because the orbit is attracting backward in time within the
slow manifold Cε and attracting forward in time along the stable fibres of Cε. Figure 8
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Figure 8: Dependence of results on tilt θL of lifting L and tilt θR of restriction R.

shows how the quality of the approximation depends on the choice of L and R (through
varying the parameters θL and θR) for two different healing times δ. We note that the
choice of healing time is limited in this example because trajectories blow up to infinity
in finite time backward in time on the slow manifold Cε. A healing time of δ = 0.2 was
the maximal value that avoided blow-up along the entire projected orbit. We can see that
the error is independent of the parameters over large ranges but that the error increases
close to θR = −0.5 (see, for example, the deviations in u1 and u3 in Figure 8(a) for
δ = 0.1). This is to be expected: the transversality conditions M1 on L and M2 on R can
be violated along hypersurfaces in the phase and parameter space, which the orbit may
intersect along the projected integration. Thus, in practical examples the transversality
has to be monitored, and possibly, the restriction and lifting have to be adapted.
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