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. . . “Mixed-Mode Oscillations” (MMOs)

1© What type of dynamical system
to model MMOs?

⇒ slow-fast dynamical systems

2© What numerical tool?

⇒ numerical continuation
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• Goal is to compute families (branches) of solutions of 
nonlinear equations of the form: 

F(x) = 0, F : Rn+1
→ R

n

! under-determined system (one more unknowns than equations)

! away from singularities, solution set = 1-dim. manifold 
embedded in (n+1)-dim. space

Numerical continuation : idea



  F(x) = 0, F : Rn+1
→ R

n

! stationary problems (search for equilibria)

! Boundary Value Problems (BVP), including periodic orbits

•Many problems can be put in this form

• In particular, discretisation of parameterised ODEs: 

This will rely on the application of the Implicit Function Theorem !

ẋ = F(x,λ)

Numerical continuation : idea



Parameter continuation

• Suppose we have one solution to the problem and wish to vary 
one component to find a new solution ...

• In the I.F.T. holds at this point, then locally there is a branch 

of solutions parameterised by λ: (x(λ), λ).  

F(x0) = 0, x0 = (x0,λ0) ∈ R
n

× R

• Small change in the parameter λ ⇒ new point that is not a 
solution of the problem but close to one! 

x#1 = (x0,λ0 + δs),

F(x#1 ) != 0,

F(x#1 ) ≪ 1



•SO initial guess for the new solution is 

• New solution computed to a desired accuracy by using Newton’s method 
on the augmented problem  

•Note: additional equation is to ensure unique solution for Newton’s 
method

x#1 = (x0,λ0 + δs)

F(x) = 0,

λ− (λ0 + δλ) = 0

Parameter continuation
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Tangent continuation

• Improvement of the method: use higher order initial guess
such as the tangent to the curve 

• New solution computed with Newton’s method on the same 
augmented problem  

x
∗

1

F(x) = 0,

λ− (λ0 + δλ) = 0

x
#
1

x0

x1

y

λ

•

•

•



Problem at a fold !!
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Keller’s pseudo-arclength continuation

• Problem at a fold: the “parameter” chosen to do the 
continuation cannot parameterise the solution curve

• Solution: parameterise by something that do not have this problem

!Arclength s along the curve !

• The problem to be solved becomes F(x) = 0,

(λ− λ0)λ̇0 + (x− x0)ẋ0 − δs = 0

Arclength measured along the tangent space !
y

λ

x
#
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•
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•

∆s



In practice: one mesures the projection 
of abscisse along the tangent!

Keller’s pseudo-arclength continuation



Periodic orbit continuation

• We look for periodic solutions of the problem :

! We seek for solutions of period 1 i.e. such that :

ẋ = F(x(t),λ)

x′ = TF(x(t),λ)

x(1) = x(0)

! The true period T is now an additional parameter

• Note: the above equations do not uniquely specify x and T ... 
... translation invariance !

! Necessity of a Phase condition

• Example: Poincaré orthogonality condition

• In practice: Integral phase condition ∫
1

0

xk(t)
∗
x
′

k−1
dt = 0

(xk(0)− xk−1(0))
∗
x
′

k−1
(0)) = 0

• Fix the interval of periodicity by the transformation t " t/T
such that :   
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• ... we then solve a large G(X) = 0 augmented by the 
arclength-continuation equation: 

• Discretisation of the periodic orbits: using orthogonal 
collocation (piecewise polynomials on mesh intervals)

! Solve exactly at mesh points (boundaries of mesh intervals)

∫
1

0

(xk(t)− xk−1(t))
∗

ẋk−1dt+ (Tk − Tk−1)Ṫk−1

+(λk − λk−1)λ̇k−1 − δs = 0

! Inside mesh intervals: well-chosen collocation points (good 
convergence properties)

• Well-posedness: n+1 unknowns (n components of x and period T)  
for n+1 conditions ( periodicity + phase)

! varying 1 parameter will give a 1-parameter family of per. orbits

Periodic orbit continuation



Better handling of the error

! ‘Boundary-Value Problem (BVP)’ vs. ‘Initial-Value Problem (IVP)’ : 
control at both ends, error ‘spread’ along the orbit instead of being  

concentrated at one end (shooting)
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Continuation of 
Boundary-Value Problems (BVPs)

• Solve G(X) = 0 augmented by the pseudo-arclength equation

• Difference: more generales boundary conditions B(F(a),F(b))=0,
                                            and integral conditions I(F(a),F(b))=0

• Same discretisation of the orbit segment i.e. by collocation 

•Problem is well posed:

# Bound. cond. + # int. cond. - dim. + 1 = # free parameters   

• Application: numerical computation of piece of 2D invariant manifolds ...



Computing 2D manifolds

• a surface



Computing 2D manifolds

• see as a one-parameter family of 

orbit segments



Computing 2D manifolds

• each orbit segment: solution to a boundary-value 
problem of the form

u(0)

u(1)

L

Σ

u̇ = Tg(u,λ)
u(0) ∈ L

u(1) ∈ Σ

g : R
n
× R

p
→ R

n

T ∈ R, λ ∈ R
p

L, Σ: submanifolds of Rn



Computing 2D manifolds

• each orbit segment: solution to a boundary-value 
problem of the form

u(0)

u(1)

L

Σ

u̇ = Tg(u,λ)
u(0) ∈ L

u(1) ∈ Σ

g : R
n
× R

p
→ R

n

T ∈ R, λ ∈ R
p

L, Σ: submanifolds of Rn

Family of well-posed BVPs:   (isolated solution)

#Bound Cond. +1 = #Eq. + #Free Par. 



Method

• each orbit segment computed by 
collocation

• family of BVPs solved by numerical 
continuation

• this allows to compute a piece of 
interest of the manifold S

S

u(0)

u(1)

L

Σ

S ∩ Σ

• note that the end point u(1) traces out the intersection curve S ∩ Σ



Continuation vs. shooting

• strong convergence or divergence of trajectories towards one another 

=⇒            problem initial mesh

            non-uniform covering of the manifold of interest=⇒

• numerical continuation well suited to slow-fast dynamical systems

=⇒            extreme sensitivity to initial conditions

            fast exponential instability of non-attracting slow manifolds=⇒

=⇒              shooting methods can fail!



Numerical Continuation

Slow-fast systems and canards in R
2

Slow-fast systems and canards in R
3 with 2 slow variables

Computation of 2D slow manifolds and canards in R
3

Detecting and “continuing” canards

Conclusion



Van der Pol with constant forcing a

r 2nd order ODE: xtt + α(x2 − 1)xt + x = a
r Recast as a set of 1st order ODEs:

εxt = (y − x3

3
+ x)

yt = a− x

avec
�

�

�

�
0 < ε = 1

α
≪ 1 .

r Dynamics as a is varied:

a = 1.2
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Benôıt, Callot, Diener & Diener (1981)

How to interpret this figure?

r use time scales
r consider the singular limit ε = 0



Bifurcations when varying a

0.999 1 1.001

1

1.5

2

a

‖·‖
2

O(exp(− c

ε
))

@@I

•
HB

.

.

r Hopf bifurcation at a = 1
r the branch initially behaves as expected in

√
a but . . .

. . . at a distance of order O(ε) from the Hopf point, the branch
increases dramatically and becomes quasi-vertical!



Time scale analysis: ε > 0 ⇒ ε = 0

xt ∼ O(1/ε) =⇒ x is fast yt ∼ O(1) =⇒ y is slow

• Limiting problem for the slow dynamics:

ε > 0

εxt = (y − 1

3
x3 + x)

yt = a− x

ε = 0 : reduced system

0 = (y − 1

3
x3 + x)

yt = a− x

• Limiting problem for the fast dynamics:
�

�

�

�
τ = t/ε

ε > 0

xτ = (y − 1

3
x3 + x)

yτ = ε(a− x)

ε = 0 : Layer system

xτ = (y − 1

3
x3 + x)

yτ = 0



Time scale analysis: ε > 0 ⇒ ε = 0

xt ∼ O(1/ε) =⇒ x is fast yt ∼ O(1) =⇒ y is slow

• Limiting problem for the slow dynamics:

ε = 0 : reduced system

0 = (y − 1

3
x3 + x)

yt = a− x

slow system:

ODE defined on

S := {y =
1

3
x3 − x}

• Limiting problem for the fast dynamics:

ε = 0 : layer system

xτ = (y − 1

3
x3 + x)

yτ = 0

fast system: family of

ODEs parametrised by y

S = set of equilibria



Time scale analysis: ε = 0 ⇒ ε > 0

−3 −1 1 3
−2

−1

0

1

2

x

y

SaSrSa

fast fiber

slow curve

bif. point

bif. point

.

.
r outside a neighbourhood of the cubic S , the fast dynamics
dominates

r in an ε-neighbourhood of S , the slow dynamics dominates
r transition: bifurcation points of fast dynamics

Note S has 2 fold points ⇒ stability is different on each side:

Sa is attracting and S r is repelling



Back to Benôıt et al.



Back to Benôıt et al.

r The Van der Pol system possesses unexpected limit cycles
which

◦ follow the attracting part Sa of the cubic S . . .
◦ down to the fold, and then . . .
◦ follow the repelling part S r of S!

r these cycles have been named canards by the French
mathematicians who discovered them.



Back to Benôıt et al.



Invariant manifolds: ε = 0 ⇒ ε > 0

Fenichel Theory away from fold points, the attracting and repelling

sheets Sa and S r of S persist for ε > 0 (suff. small) as (locally)
invariant manifolds Sa

ε
and S r

ε
called slow manifolds.

Transition if a is decreased from the Hopf bifurcation point, ⇒ Sa

ε

et S r

ε
exchange their relative positions.
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The canard point: when S
r
ε = S

a
ε

0.6 1 1.4
−0.7

−0.65

−0.6

−0.55

x

y

a ≈ 0.9934909325 ε = 0.05
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ε
= Sr
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.

.

r the slow manifolds Sa

ε
and S r

ε
pass through each other for

a = ac(ε) called the point de canard
r the value ac(ε) can be obtained using an asympt. expansion
in ε from the equation Sa

ε
= S r

ε
, which defines the maximal

canard



The canard point: when S
r
ε = S

a
ε

−1 0 1 2
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y a ≈ 0.9934909325 ε = 0.05

SSa

ε
= Sr
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.

.

r the maximal canard follows Sr for the longest time, i.e., until
the left fold point.



The canard point: when S
r
ε = S

a
ε
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r the maximal canard:

◦ transition between small-amplitude headless canards and
large-amplitude canards with head

◦ located in the upper part of the quasi-vertical segment of the
branch of limit cycles

r this transition:

◦ interval of a-values which is exponentially small en ε
◦ extremely brutal (yet continuous!) event termed canard

explosion by Brøns [Math. Eng. Ind. 2: 51–63, 1988]



Easy to find canards numerically?



Easy to find canards numerically?

by direct simulations: Delicate ...

¬ see the values of a on the left!

⇒ such a system is extremely sensitive to
initial conditions and to parameter
variations . . .

 and here ε is “only” 0.05 . . . !

Already remarkable that this
canard explosion could be
computed by Benôıt et al. at the
end of the 1970s!!



Problems when simulating slow-fast systems

r extreme sensitivity to initial conditions ⇒ if ε is too small,
one needs time steps getting closer to machine-precision

r direct simulation by shooting can be less reliable if the vector
field has a strong repulsion in the normal direction

r lack of precision of initial value solvers can lead to spurious
solution (fake chaos!)

One solution: numerical continuation of periodic orbits

r continuation: predictor-corrector method (Implicit Function
Theorem)

r collocation: better handling of the error and good
convergence properties

r integration time T becomes an unknown



Canard explosion computed by continuation

−2 0 2
−0.8

0

0.8

x

y

Family of canards

ε = 0.005



Example: the FitzHugh-Nagumo system

vt = v − v3/3− w + I

wt = ε(v + a+ bw)

Valeurs des Paramètres

ε = 0.01

a = 0.7

b = −0.8

I : bifurcation parameter



Canard explosion → action potential



Summary for the 2D case: canard explosion

r interesting phenomenon, brutal but non-discontinuous!
r first discovered by direct simulation ∼ 30 years ago
r brutal because: exp. small (in ε) parameter variation
r much more general than Van der Pol!
r transition to the maximal canard only requires a non
degenerate quadratic fold in the fast nullcline S ⇒ robust

r encountered in many applications since the early 80s:

◦ chemistry (Belousov-Zhabotinskii)
◦ neuroscience (FitzHugh-Nagumo)
◦ mechanical systems, electronic circuits, . . .

What if we add an extra slow variable ?
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Simplest way : add a constant slow drift

εxt = y − x2

yt = a− x

zt = µ

r x and y are slow
r z is fast

fast dynamics is trivial; let’s focus on the slow one!

ε = 0 : reduced system

0 = y − x2

yt = a− x

zt = µ

slow system

curve surface

S := {y = x2}
called critical manifold

S : parabola in R
2 =⇒ parabolic cylinder in R

3

fold F: isolated points in R
2 =⇒ curve F in R

3



Slow flow

r In order to understand the flow on S := {y − x2 = 0}:
◦ diff. w.r.t time of y − x2 = 0 gives

yt − 2xxt = 0

◦ projection onto the (x , z)-plane

2xxt = a− x

zt = µ

Problem along the fold curve F : x = 0 ⇒ system is singular

r desingularisation (time rescaling) gives

xt = a− x

zt = 2xµ

r defines the slow flow



Flow of the desingularised reduced system

Srz > 0

F

Saz < 0

•

x

z

y

.

.

Remarque: Equilibrium point on the fold curve!!

The eigenvalue ratio at this point is a function of µ



Flow of the reduced system

Sr

F

Sa

•

x

z

y

.

.

This point is called a folded node



Singular canards

r Equilibria of the desingularised reduced system are on the fold
curve

r This defines folded-singularities (folded-node, folded-saddle,
folded-focus, . . . )

r time rescaling to desingularise the reduced system

◦ solutions crosses the origin with 6=0 speed
◦ such orbits are called (singular) canards

Situation for ε > 0 ?



The perturbed case: ε > 0

Recall Outside F , Fenichel theory ensures the existence of
attracting and repelling slow manifolds Sa

ε
of dim. 2. and S r

ε

r Along the fold curve, one cannot apply these results anymore;
however, one can follow Sa,r

ε by the flow.

r Their transversal intersections define maximal canards!

r Many of them can appear in this 3-dim. context!

r Differentes techniques of analysis: nonstandard analysis,
matched asymptotics, parameter blow-up, . . .



The perturbed case: ε > 0 THEORY

Benôıt (2001)

when µ /∈ N, two (primary) maximal canards (primaires) exist
for every ε (only one if µ ∈ N)

Szmolyan, Wechselberger (2001)

same results proven with a different method

Wechselberger (2005)

when µ ∈ 2N+1, bifurcations of primary canards occur and
they give rise to secondary canards. If int(µ) = 2k + 1 then
there exist k secondary canards, corresponding to 2k + 1
twists of the slow manifolds around each other.

Good news: Canards are robust in R
3, they exist for O(1) ranges

of parameters
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The perturbed case: ε > 0 NUMERICS

r a 2D invariant manifold can be represented by a family of
orbit segments

r this family is obtained by numerical continuation of a
one-parameter family of well-posed Boundary-Value
Problems (B.V.P.)

r Our numerical protocol imposes that each orbit segment has

◦ its initial point on a curve traced on S (we make use of the
normal hyperbolicity of S outside the fold curve!)

◦ its end point in a cross-section transerval to the flow near the
fold, chosen so that the resulting surface renders a piece of
interest of the slow manifold



Illustration: numerical computation of Sa
ε

[Desroches, Krauskopf et Osinga, SIAM J. Appl. Dyn. Sys. 7(4), 2008 ]



Slow manifolds and canards
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Interactions on each side of the folded node



Example: the self-coupled FitzHugh-Nagumo system
(see demo fnc of auto)

vt = h − (v3 − v + 1)/2− γsv

ht = −ε(2h + 2.6v)

st = βH(v)(1− s)− εδs

variables

v membrane potential
h inactivation of ionic channels
s synaptic coupling

H(v) Heaviside

parameters

γ coupling strength
β activation of the synapse
εδ inactivation of the synapse

0<ε≪1 small parameter



Example: the self-coupled FitzHugh-Nagumo system
(see demo fnc of auto)

vt = h − (v3 − v + 1)/2− γsv

ht = −ε(2h + 2.6v)

st = βH(v)(1− s)− εδs
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Example: the self-coupled FitzHugh-Nagumo system
(see demo fnc of auto)
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The silent phase system

r 3D slow-fast system with 2 slow variables

vt = h − (v3 − v + 1)/2− γsv

ht = −ε(2h + 2.6v)

st = −εδs

v < 0 : fast variable

h ∈ [0, 1] : slow variable

s ∈ [0, 1] : slow variable

r critical manifold: S := {h = (v3 − v + 1)/2 + γsv}
r S possesses

r a fold curve F := {h = 1
2
− v3, s = 1−3v2

2γ
}

r a cusp point (v , h, s) = (0, 1
2
, 1
2γ
)

r the fold curve F separates S into an attracting sheet Sa from
a repelling one Sr



The critical manifold S and the fold curve F

h
FSa

Sr

s

v

.

.

folded node

.

.



Folded node & return mechanism

r “FHN+self-coupling” possesses a folded node for certain
values of param. γ and δ

r (singular) canards in the reduced system
r perturbation (ε > 0) ⇒ canard solutions of the silent phase
system

r the active phase offers a return mechanism that can generate
complex periodic solutions, usually referred to as mixed-mode
oscillations (MMOs)

⇒ definition: periodic solutions formed by an alternation of
small-amplitude oscillations and large-amplitude oscillation;
notation: ℓs for s small oscillations and ℓ large.

r Théorème (Brøns et al. 2006): A slow-fast system in R
3

possessing 2 slow variables, a folded node and a return
mechanism produces MMOs of type 1s ; the number s of small
osc. is determined by the canard solutions associated with the
folded node.



Computation of perturbed manifolds: starting solution?

Importante question : how did I get the initial segment ?



Computation of perturbed manifolds: starting solution?

r Present case: easy! This system is of ”normal form” type, it
possesses enough symmetry and explicit solutions

r In general: Not that easy!!

A good solution. . .

r Direct simulation? Delicate! Near the fold curve F , the
competition between time scales is very strong ⇒ substantial
chances to be ejected!

r Continuation of families of BVPs based on an (additional)
homotopy method



Step 1: away from the folded node . . .



Step 2: away from the fold curve . . .



The slow manifolds
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Interactions between S
a
ε and S
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MMOs rotation sectors
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MMOs rotation sectors
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[Desroches, Krauskopf et Osinga, CHAOS 18(1), 2008 ]
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Detection of canard orbits: method

r we consider the intersection curves Sa

ε
∩Σ and S r

ε
∩Σ of the

slow manifolds with a common end section Σ

r approximation of the coordinates of these ∩ points in Σ

 correspond to canard orbits!

r stop the computations at the corresponding values using
test-fonctions

r this yields two “half canard segments”:
ξa on Sa

ε
and ξr on S r

ε

r ensuring that |ξa(1)− ξr(0)| is suff. small, a simple Newton
iteration converges towards a “full” canard segment.



Detection of canard orbits: in section Σfn
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Detection of canard orbits: in R
3
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ξa
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“Continuing” canards: initial situation
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“Continuing” canards: no need for Σfn!

Sa

Sr

ξ6

Lr

La

F

.

.

r two cond. to fix the ini. cond. on La

r two cond. to fix the end point on Lr

r quatre unknowns (3 var. + int. time)

⇒ well-posed BVP

⇒ isolated solution

varying one system parameter ⇒ one-parameter family of canard orbits



FHN example: continuation in ε for ε → 0



FHN example: bifurcation diagram as a function of ε
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[Desroches, Krauskopf et Osinga, Nonlinearity 23(4): 739–765, 2010 ]



FHN example: canard continuation in ε ր



Solution profile when ε is increased
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Summary for the 3D case: canards/folded node

r canards like to live in R
3!

r still challenging numerically BUT the continuation of BVPs
proves to be very efficient and reliable to

◦ compute slow manifolds
◦ detect their transversal intersections: maximal canards
◦ continue canards in any system parameter

r folded node type canards have specific small oscillations
r add a return mechanism: they organise the dynamics of
families of complex oscillatory solutions Mixed-Mode
Oscillations (MMOs)

r the underlying theory is recent and still under development
(Wechselberger, Krupa, Popovic, Guckenheimer, . . . )

one could say, of course, much more . . .



What I haven’t talked about . . .

r bifurcations of folded singularities give rise to much more
complicated dynamics and much more complex MMO patterns

⇒ theory is still incomplete (folded saddle-node singularity,
singular Hopf bifurcation, . . . )

r I talked about the “1 fast - 2 case” but there is (at least)
one other very interesting case in 3D slow-fast systems:
“1 slow - 2 fast”

⇒ can give rise to bursting oscillations, possibly linked to the
canard phenomenon!



Spike-adding “via canards”!

This is a Morris-Lecar type system in R
3 est

obtained by putting a slow dynamics onto the

applied current I

Bifurcation parameter: ε
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