An example from chemical dynamics

The model

- Peroxidase-Oxidase (PO) reaction
- we consider the Olsen model (1983):

$$\begin{array}{rcl} A' &=& -k_3 ABY + k_7 - k_{-7} A \\ B' &=& \alpha (-k_3 ABY - k_1 BX + k_8) \\ X' &=& k_1 BX - 2k_2 X^2 + 3k_3 ABY - k_4 X + k_6 \\ Y' &=& -k_3 ABY + 2k_2 X^2 - k_5 Y \end{array}$$

• "classical" parameter values:

k_1	k_2	k_3	k_4	k_5	k_6	k_7	k_{-7}	k_8	α
0.28	250	0.035	20	5.35	0	0.8	0.1	0.825	1

- one should have: $0 < k_6 \ll 1$ but from math. viewpoint, interesting to consider the limit: $k_6 = 0$ since the (A,B)-plane becomes invariant.
- α : artificial time scale parameter ... we will see the reason soon ...

The Olsen model's typical dynamics

- multiple time scales, in particular B seems to evolve on slower time scale than the other 3 variables A, X, and Y.
- direct simulation shows mixed-mode oscillations (MMOs) with different patterns upon variation of several parameters, in particular k_1 .

The Olsen model's typical dynamics

- multiple time scales, in particular B seems to evolve on slower time scale than the other 3 variables A, X, and Y.
- direct simulation shows mixed-mode oscillations (MMOs) with different patterns upon variation of several parameters, in particular k_1 .

The Olsen model's typical dynamics

- multiple time scales, in particular B seems to evolve on slower time scale than the other 3 variables A, X, and Y.
- direct simulation shows mixed-mode oscillations (MMOs) with different patterns upon variation of several parameters, in particular k_1 .

Fast subsystem of the Olsen model

- let's assume that B is a slow variable (seems reasonable from the simulations)
- the fast subsystem is obtained by setting $\alpha = 0$ in the full system:

 $\begin{array}{rcl} A' &=& -k_3 ABY + k_7 - k_{-7} A \\ X' &=& k_1 BX - 2k_2 X^2 + 3k_3 ABY - k_4 X + k_6 \\ Y' &=& -k_3 ABY + 2k_2 X^2 - k_5 Y \end{array}$

where **B** is now a parameter!

• **slow-fast dissection:** the dynamics of the full system is dictated by the attractors of the fast subsystem ...

 In particular, the passage between 2 different epochs of MMOs correspond to a bifurcation point of the fast subsystem

B slow: good assumption?

 "classical" method: to superimpose the bifurcation diagram of the fast subsystem onto the attractor of the full system ...

 ... it was indeed a good assumption! We start to unravel more the dynamics of the MMOs in the Olsen model.

Mechanisms for MMOs here

- **dynamic bifurcation phenomena :** bifurcation of a fast subsystem that the full system "senses" with a delay, sticking to a repelling branch beyond the bifurcation point
- Here: family of focus equilibria of the fast subsystem loses stability at stability at a Hopf bifurcation ... dynamic Hopf bifurcation

• Delayed exchange of stability of the invariant (A,B)-plane ...

accounts for the large-amplitude oscillations (LAOs) of the MMOs of the full system

 Change of # of SAOs ... local interaction between attracting and repelling slow(-like) manifolds

Computation of a ID stable manifold by numerical continuation

• Boundary conditions:

 $\mathbf{u}(0) \in \{A = k\}$ $\mathbf{u}(1) \in E^{s}(p)$

• Continuation par:

integration time T and k

Repelling slow(-like) manifold

Computation of ID unstable manifold

• similar boundary conditions as in the repelling case ...

u(0)	\in	$E^u(p)$
u(1)	\in	$\{A = k\}$

same continuation parameters: T and k

Attracting slow(-like) manifold: step |

• "switching on" the dynamics of B by continuing in α the approx. of : W_B^u

5 Boundary conditions:

$$\mathbf{u}(0) \in E_{79}^u$$
$$\mathbf{u}(1) \in \{A = A^*\}$$

2 continuation par.:

Attracting slow(-like) manifold: step 2

• "pushing" the B-value of the end point past the Hopf bifurcation point :

Attracting slow(-like) manifold: step 2

• "pushing" the B-value of the end point past the Hopf bifurcation point :

Attracting slow(-like) manifold: step 3

• move $\mathbf{u}(0)$ along the trivial branch of saddle equilibria of the fast subsys.:

Local interactions in section {B=53}

• Attracting and repelling extended slow manifold locally twist and intersect transversally ...

Local interactions in section {B=53}

• Attracting and repelling extended slow manifold locally twist and intersect transversally ...

Local interactions in section {B=53}

• Attracting and repelling extended slow manifold locally twist and intersect transversally ...

Separating locally MMOs

 Intersection points in section {B=53} correspond to trajectories that organise the transition between diff. patterns of MMOs ...

